An efficient matheuristic for the robust multiple allocation p-hub median problem under polyhedral demand uncertainty

Abstract This paper addresses the robust multiple allocation p-hub median problem under polyhedral demand uncertainty. Three variants of polyhedral uncertainty models are used in the problem, namely the hose, the hybrid, and the budget uncertainty models. The problems are formulated as linear mixed integer programming problems and a Tabu Search (TS) based matheuristic approach is proposed to solve the three variants of the problem. Extensive computational experiments are conducted based on three well-known data sets in the hub location literature and the results show the capability of the proposed solution algorithm to obtain the optimal solutions in short computational times.

[1]  Ehsan Nikbakhsh,et al.  Hub location problems: A review of models, classification, solution techniques, and applications , 2013, Comput. Ind. Eng..

[2]  Sibel A. Alumur,et al.  Hub location under uncertainty , 2012 .

[3]  Andreas T. Ernst,et al.  Solution algorithms for the capacitated single allocation hub location problem , 1999, Ann. Oper. Res..

[4]  Hande Yaman,et al.  A capacitated hub location problem under hose demand uncertainty , 2017, Comput. Oper. Res..

[5]  Nader Ghaffari-Nasab,et al.  An adaptive large neighborhood search heuristic for solving the reliable multiple allocation hub location problem under hub disruptions , 2017 .

[6]  Iván A. Contreras,et al.  Hub Location Problems , 2015 .

[7]  M. O'Kelly,et al.  A quadratic integer program for the location of interacting hub facilities , 1987 .

[8]  Ta-Hui Yang,et al.  Stochastic air freight hub location and flight routes planning , 2009 .

[9]  Vladimir Marianov,et al.  A competitive hub location and pricing problem , 2013, Eur. J. Oper. Res..

[10]  Mohamad Saeed Jabalameli,et al.  A simulated annealing-based heuristic for the single allocation maximal covering hub location problem , 2012, Int. J. Metaheuristics.

[11]  Necati Aras,et al.  A Matheuristic for Leader-Follower Games Involving Facility Location-Protection-Interdiction Decisions , 2013 .

[12]  Kuo-Ching Ying,et al.  Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics , 2016 .

[13]  D. Skorin-Kapov,et al.  Tight linear programming relaxations of uncapacitated p-hub median problems , 1996 .

[14]  H. Yaman,et al.  Robust intermodal hub location under polyhedral demand uncertainty , 2016 .

[15]  Jeng-Fung Chen,et al.  A hybrid heuristic for the uncapacitated single allocation hub location problem , 2007 .

[16]  Claudio B. Cunha,et al.  New simple and efficient heuristics for the uncapacitated single allocation hub location problem , 2009, Comput. Oper. Res..

[17]  Fereidoon Habibzadeh Boukani,et al.  Robust optimization approach to capacitated single and multiple allocation hub location problems , 2016 .

[18]  Morton E. O'Kelly,et al.  Twenty-Five Years of Hub Location Research , 2012, Transp. Sci..

[19]  Thomas Siwczyk,et al.  Matheuristics for optimizing the network in German wagonload traffic , 2017, EURO J. Comput. Optim..

[20]  D. Skorin-Kapov,et al.  On tabu search for the location of interacting hub facilities , 1994 .

[21]  Sue Abdinnour-Helm,et al.  Using simulated annealing to solve the p‐Hub Median Problem , 2001 .

[22]  Ziyou Gao,et al.  Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty , 2016 .

[23]  Ebrahim Teimoury,et al.  Robust optimization approach to the design of hub-and-spoke networks , 2015 .

[24]  Horst W. Hamacher,et al.  Adapting polyhedral properties from facility to hub location problems , 2004, Discret. Appl. Math..

[25]  Sibel A. Alumur,et al.  A tabu-search based heuristic for the hub covering problem over incomplete hub networks , 2009, Comput. Oper. Res..

[26]  Iván A. Contreras,et al.  Robust uncapacitated hub location , 2017 .

[27]  Sibel A. Alumur,et al.  Network hub location problems: The state of the art , 2008, Eur. J. Oper. Res..

[28]  James F. Campbell Hub Location and the p-Hub Median Problem , 1996, Oper. Res..

[29]  Bahar Yetis Kara,et al.  Efficient simulated annealing based solution approaches to the competitive single and multiple allocation hub location problems , 2018, Comput. Oper. Res..

[30]  Gilbert Laporte,et al.  Stochastic uncapacitated hub location , 2011, Eur. J. Oper. Res..

[31]  Kai Wei,et al.  Matheuristics for the single-path design-balanced service network design problem , 2017, Comput. Oper. Res..

[32]  James F. Campbell,et al.  Integer programming formulations of discrete hub location problems , 1994 .

[33]  Nader Ghaffari-Nasab,et al.  Hub interdiction problem variants: Models and metaheuristic solution algorithms , 2017, Eur. J. Oper. Res..

[34]  Reinaldo Morabito,et al.  Benders decomposition applied to a robust multiple allocation incomplete hub location problem , 2018, Comput. Oper. Res..

[35]  Andreas T. Ernst,et al.  Efficient algorithms for the uncapac-itated single allocation p-hub median problem , 1996 .

[36]  Haluk Topcuoglu,et al.  Solving the uncapacitated hub location problem using genetic algorithms , 2005, Comput. Oper. Res..

[37]  Ragheb Rahmaniani,et al.  Meta-heuristic solution approaches for robust single allocation p-hub median problem with stochastic demands and travel times , 2016 .

[38]  Michel Gendreau,et al.  A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking , 2017, Comput. Oper. Res..

[39]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[40]  Barrett W. Thomas,et al.  The stochastic p-hub center problem with service-level constraints , 2009, Comput. Oper. Res..

[41]  Yan-Kui Liu,et al.  Applying Minimum-Risk Criterion to Stochastic Hub Location Problems , 2012 .

[42]  Vittorio Maniezzo,et al.  Matheuristics: Hybridizing Metaheuristics and Mathematical Programming , 2009 .

[43]  Vladimir Marianov,et al.  Location models for airline hubs behaving as M/D/c queues , 2003, Comput. Oper. Res..

[44]  Rubén Ruiz,et al.  Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources , 2017, Eur. J. Oper. Res..

[45]  Olinto César Bassi de Araújo,et al.  Matheuristics for the capacitated p-median problem , 2015, Int. Trans. Oper. Res..

[46]  Reza Ghanbari,et al.  An efficient tabu search for solving the uncapacitated single allocation hub location problem , 2016, Comput. Ind. Eng..

[47]  Ricardo Saraiva de Camargo,et al.  A hybrid Outer-Approximation/Benders Decomposition algorithm for the single allocation hub location problem under congestion , 2011, Oper. Res. Lett..

[48]  A. Unnikrishnan,et al.  Robust hub network design problem , 2014 .

[49]  Eduardo G. Carrano,et al.  Integrating matheuristics and metaheuristics for timetabling , 2016, Comput. Oper. Res..

[50]  Vladimir Marianov,et al.  Location of hubs in a competitive environment , 1999, Eur. J. Oper. Res..

[51]  Andreas T. Ernst,et al.  Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem , 1998 .

[52]  Bahar Y. Kara,et al.  A hub covering model for cargo delivery systems , 2007 .

[53]  James F. Campbell,et al.  Location and allocation for distribution systems with transshipments and transportion economies of scale , 1993, Ann. Oper. Res..

[54]  Claudio B. Cunha,et al.  Production , Manufacturing and Logistics A tabu search heuristic for the uncapacitated single allocation p-hub maximal covering problem , 2017 .

[55]  Andreas T. Ernst,et al.  Preprocessing and cutting for multiple allocation hub location problems , 2004, Eur. J. Oper. Res..