The subspace projected approximate matrix (SPAM) modification of the Davidson method
暂无分享,去创建一个
Jeffrey L. Tilson | Ron Shepard | Michael Minkoff | Albert F. Wagner | M. Minkoff | R. Shepard | A. Wagner | J. Tilson
[1] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[2] W. Miller. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems , 1975 .
[3] J. Cullum,et al. Computing eigenvalues of very large symmetric matrices—An implementation of a Lanczos algorithm with no reorthogonalization , 1981 .
[4] C. Moler,et al. Numerical algorithms in chemistry: algebraic methods. [Workshop, August 9-11, 1978] , 1978 .
[5] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[6] Ron Shepard,et al. Elimination of the diagonalization bottleneck in parallel Direct-SCF methods , 1993 .
[7] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[8] B. Parlett. The Algebraic Eigenvalue Problem (J. H. Wilkinson) , 1966 .
[9] F. L. Pilar,et al. Elementary Quantum Chemistry , 1968 .
[10] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[11] Thomas Müller,et al. High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .
[12] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[13] W. Miller,et al. Quantum mechanical calculations of the rate constant for the H2+OH→H+H2O reaction: Full‐dimensional results and comparison to reduced dimensionality models , 1994 .
[14] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[15] C. Bender,et al. The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices , 1973 .
[16] William H. Miller,et al. The cumulative reaction probability as eigenvalue problem , 1993 .
[17] J. Olsen,et al. Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .
[18] E. Davidson,et al. Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .
[19] J. H. van Lenthe,et al. A space‐saving modification of Davidson's eigenvector algorithm , 1990 .
[20] Ernest R. Davidson,et al. Super-matrix methods , 1989 .
[21] Robert J. Harrison,et al. Approaches to large‐scale parallel self‐consistent field calculations , 1995, J. Comput. Chem..
[22] Russell M. Pitzer,et al. A progress report on the status of the COLUMBUS MRCI program system , 1988 .
[23] H.J.J. Van Dam,et al. An improvement of Davidson's iteration method: Applications to MRCI and MRCEPA calculations , 1996 .
[24] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[25] Bernard Philippe,et al. The Davidson Method , 1994, SIAM J. Sci. Comput..
[26] Robert J. Harrison,et al. High-Performance Computational Chemistry: Hartree-Fock Electronic Structure Calculations on Massively Parallel Processors , 1999, Int. J. High Perform. Comput. Appl..
[27] M. Almond,et al. Computers in Physics , 1971 .
[28] William J. Thompson,et al. Monster Matrices: Their Eigenvalues and Eigenvectors , 1993 .