Copula-Based Dynamic Conditional Correlation Multiplicative Error Processes

We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows capturing (multivariate) dynamics in higher order moments. The latter are modeled using a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks.

[1]  Wolfgang Härdle,et al.  Dynamic activity analysis model-based win-win development forecasting under environment regulations in China , 2014, Comput. Stat..

[2]  Ulf Brüggemann,et al.  Fair Value Reclassifications of Financial Assets During the Financial Crisis , 2014 .

[3]  Ostap Okhrin,et al.  Hierarchical Archimedean Copulae: The HAC Package , 2012 .

[4]  Jakob Söhl,et al.  Confidence sets in nonparametric calibration of exponential Lévy models , 2012, Finance Stochastics.

[5]  Sebastian Braun,et al.  Implementing Quotas in University Admissions: An Experimental Analysis , 2011, Games Econ. Behav..

[6]  The 2011 European short sale ban on financial stocks: A cure or a curse? , 2013 .

[7]  Mammen Enno,et al.  Generated Covariates in Nonparametric Estimation: A Short Review. In: Recent Developments in Modeling and Applications in Statistics , 2013 .

[8]  R. Nickl,et al.  A Donsker Theorem for Lévy Measures , 2012 .

[9]  Chitru S. Fernando,et al.  Managerial Overconfidence and Corporate Risk Management , 2012 .

[10]  C. Brownlees,et al.  A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series , 2012 .

[11]  T. Dickhaus,et al.  Multiple point hypothesis test problems and effective numbers of tests , 2012 .

[12]  Ulf Brüggemann,et al.  Intended and Unintended Consequences of Mandatory IFRS Adoption: A Review of Extant Evidence and Suggestions for Future Research , 2012 .

[13]  Enzo Weber,et al.  The Signal of Volatility , 2012 .

[14]  C. Hafner,et al.  Volatility of price indices for heterogeneous goods , 2012 .

[15]  Wenjuan Chen,et al.  Do Japanese Stock Prices Reflect Macro Fundamentals , 2012 .

[16]  Dieter Nautz,et al.  Correlated Trades and Herd Behavior in the Stock Market , 2012 .

[17]  Rainer Schulz,et al.  Location, location, location: Extracting location value from house prices , 2012 .

[18]  Peter N. C. Mohr,et al.  The Aging Investor: Insights from Neuroeconomics , 2012 .

[19]  W. Härdle,et al.  Local Adaptive Multiplicative Error Models for High- Frequency Forecasts , 2012 .

[20]  Dedy Dwi Prastyo,et al.  Support Vector Machines with Evolutionary Feature Selection for Default Prediction , 2012 .

[21]  Zografia Anastasiadou,et al.  Statistical Modelling of Temperature Risk , 2012 .

[22]  Thorsten Dickhaus,et al.  Simultaneous Statistical Inference in Dynamic Factor Models , 2012 .

[23]  Matthias Ritter,et al.  Forecast based Pricing of Weather Derivatives , 2015 .

[24]  U. Horst,et al.  Hidden Liquidity: Determinants and Impact , 2012 .

[25]  Franziska Lottmann Explaining regional unemployment differences in Germany: a spatial panel data analysis , 2012 .

[26]  Mathias Trabs,et al.  Option calibration of exponential Lévy models: Implementation and empirical results , 2012 .

[27]  Jesus M. Salas,et al.  Why Do Firms Engage in Selective Hedging , 2012 .

[28]  Johanna Kappus Nonparametric adaptive estimation of linear functionals for low frequency observed L evy processes , 2012 .

[29]  Hong Lan,et al.  Existence and Uniqueness of Perturbation Solutions to DSGE Models , 2012 .

[30]  Hanna Wielandt,et al.  The Polarization of Employment in German Local Labor Markets , 2012 .

[31]  Joachim Gassen,et al.  Comparability Effects of Mandatory IFRS Adoption , 2012 .

[32]  Ruihong Huang,et al.  On the Dark Side of the Market: Identifying and Analyzing Hidden Order Placements , 2012 .

[33]  A. Engelen,et al.  A Strategy Perspective on the Performance Relevance of the CFO , 2012 .

[34]  Rainer Schulz,et al.  A Slab in the Face: Building Quality and Neighborhood Effects , 2012 .

[35]  W. Härdle,et al.  Quantile Regression in Risk Calibration , 2012 .

[36]  Ralf Sabiwalsky Does Basel II Pillar 3 Risk Exposure Data Help to Identify Risky Banks? , 2012 .

[37]  Ludger Overbeck,et al.  Copula dynamics in CDOs , 2012 .

[38]  Jürgen Symanzik,et al.  Computational Statistics (Journal) , 2012 .

[39]  Wolfgang Karl Härdle,et al.  HMM in Dynamic HAC Models , 2012 .

[40]  Ralph E. Steuer,et al.  Is socially responsible investing just screening? : Evidence from mutual funds , 2012 .

[41]  D. Hamermesh,et al.  Total work and gender: facts and possible explanations , 2012 .

[42]  Harry Joe,et al.  Composite Likelihood Methods , 2012 .

[43]  H. Joe,et al.  COMPOSITE LIKELIHOOD FOR TIME SERIES MODELS WITH A LATENT AUTOREGRESSIVE PROCESS , 2011 .

[44]  Fabrizio Cipollini,et al.  Intra-Daily Volume Modeling and Prediction for Algorithmic Trading , 2010 .

[45]  Tae-Hwy Lee,et al.  Copula-based multivariate GARCH model with uncorrelated dependent errors , 2009 .

[46]  Yan Liu,et al.  Efficient estimation of copula-GARCH models , 2009, Comput. Stat. Data Anal..

[47]  Fabrizio Cipollini,et al.  Semiparametric Vector MEM , 2008 .

[48]  Nikolaus Hautsch,et al.  Capturing Common Components in High-Frequency Financial Time Series: A Multivariate Stochastic Multiplicative Error Model , 2008 .

[49]  Fabrizio Cipollini,et al.  Vector Multiplicative Error Models:Representation and Inference , 2006 .

[50]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[51]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[52]  Timo Teräsvirta,et al.  Evaluating Models of Autoregressive Conditional Duration , 2006 .

[53]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[54]  L. Bauwens,et al.  The stochastic conditional duration model: a latent variable model for the analysis of financial durations , 2004 .

[55]  Eric Ghysels,et al.  Stochastic volatility duration models , 2004 .

[56]  Luc Bauwens,et al.  The Stochastic Conditional Duration Model: A Latent Factor Model for the Analysis of Financial Durations , 2004 .

[57]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[58]  Olivier Ledoit,et al.  Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size , 2002 .

[59]  R. Engle Dynamic Conditional Correlation , 2002 .

[60]  R. Engle New Frontiers for Arch Models , 2002 .

[61]  S. Manganelli Duration, Volume and Volatility Impact of Trades , 2002, SSRN Electronic Journal.

[62]  Ruey S. Tsay,et al.  A nonlinear autoregressive conditional duration model with applications to financial transaction data , 2001 .

[63]  Andrew J. Patton Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula , 2001 .

[64]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[65]  Philip B. Whyman,et al.  The Impact of the Euro , 2000 .

[66]  H. Joe Multivariate models and dependence concepts , 1998 .

[67]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[68]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[69]  Adrian Pagan,et al.  Estimation, Inference and Specification Analysis. , 1996 .

[70]  L. Glosten Is the Electronic Open Limit Order Book Inevitable , 1994 .

[71]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[72]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[73]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[74]  S. John Some optimal multivariate tests , 1971 .

[75]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .