Interactive multiobjective fuzzy random programming through the level set-based probability model

This paper considers a multiobjective linear programming problem involving fuzzy random variable coefficients. A new fuzzy random programming model is proposed by extending the ideas of level set-based optimality and a stochastic programming model. The original problem involving fuzzy random variables is transformed into a deterministic equivalent problem through the proposed model. An interactive algorithm is provided to obtain a satisficing solution for a decision maker from among a set of newly defined Pareto optimal solutions. It is shown that an optimal solution of the problem to be solved iteratively in the interactive algorithm is analytically obtained by a combination of the bisection method and the simplex method.

[1]  J. Teghem,et al.  STRANGE: an interactive method for multi-objective linear programming under uncertainty , 1986 .

[2]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[3]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[4]  H. Rommelfanger Fulpal — An Interactive Method for Solving (Multiobjective) Fuzzy Linear Programming Problems , 1990 .

[5]  H. Ishii,et al.  Chance constrained bottleneck spanning tree problem with fuzzy random edge costs , 2000 .

[6]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[7]  S. Kataoka A Stochastic Programming Model , 1963 .

[8]  Masatoshi Sakawa,et al.  Fuzzy random bottleneck spanning tree problems using possibility and necessity measures , 2004, Eur. J. Oper. Res..

[9]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[10]  Nguyen Van Hop,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[11]  Jiuping Xu,et al.  Multi-objective decision making model under fuzzy random environment and its application to inventory problems , 2008, Inf. Sci..

[12]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[13]  I. M. Stancu-Minasian,et al.  Stochastic Programming: with Multiple Objective Functions , 1985 .

[14]  Yue Zhang,et al.  The theory of fuzzy stochastic processes , 1992 .

[15]  Ichiro Nishizaki,et al.  A Possibilistic and Stochastic Programming Approach to Fuzzy Random MST Problems , 2005, IEICE Trans. Inf. Syst..

[16]  A. M. Geoffrion Stochastic Programming with Aspiration or Fractile Criteria , 1967 .

[17]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[18]  Debjani Chakraborty,et al.  A single-period inventory model with fuzzy random variable demand , 2005, Math. Comput. Model..

[19]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[20]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[21]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[22]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[23]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[24]  H. Ishii,et al.  LINEAR PROGRAMMING PROBLEM WITH FUZZY RANDOM CONSTRAINT , 2000 .

[25]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[26]  Zdeněk Zmeškal Value at risk methodology of international index portfolio under soft conditions (fuzzy-stochastic approach) , 2005 .

[27]  M. Sakawa,et al.  Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters , 1989 .

[28]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[29]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[30]  Ichiro Nishizaki,et al.  A fuzzy random multiob jective 0-1 programming based on the expectation optimization model using possibility and necessity measures , 2004, Math. Comput. Model..

[31]  R. Kruse,et al.  Statistics with vague data , 1987 .

[32]  M. Duran Toksari,et al.  Taylor series approach to fuzzy multiobjective linear fractional programming , 2008, Inf. Sci..

[33]  E. E. Ammar,et al.  On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem , 2008, Inf. Sci..

[34]  Yuji Yoshida Optimal stopping models in a stochastic and fuzzy environment , 2002, Inf. Sci..

[35]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[36]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .