Systolic neighborhood search on graphics processing units

In this paper, we propose a parallel processing model based on systolic computing merged with concepts of evolutionary algorithms. The proposed model works over a Graphics Processing Unit using the structure of threads as cells that form a systolic mesh. Data passes through those cells, each one performing a simple computing operation. The systolic algorithm is implemented using NVIDIA’s compute unified device architecture. To investigate the behavior and performance of the proposed model we test it over a NP-complete problem. The study of systolic algorithms on GPU and the different versions of the proposal show that our canonical model is a competitive solver with efficacy and presents a good scalability behavior across different instance sizes.

[1]  Enrique Alba,et al.  Systolic Optimization on GPU Platforms , 2011, EUROCAST.

[2]  H. T. Kung Let's Design Algorithms for VLSI Systems , 1979 .

[3]  Graham M. Megson,et al.  Synthesis of a systolic array genetic algorithm , 1998, Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing.

[4]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[5]  Sungjae Park,et al.  An Integer Programming-based Local Search for Large-Scale Multidimensional Knapsack Problems , 2011 .

[6]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[7]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[8]  Ares Lagae,et al.  Procedural noise using sparse Gabor convolution , 2009, SIGGRAPH '09.

[9]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[10]  Saïd Hanafi,et al.  New convergent heuristics for 0-1 mixed integer programming , 2009, Eur. J. Oper. Res..

[11]  Saïd Hanafi,et al.  Improved convergent heuristics for the 0-1 multidimensional knapsack problem , 2011, Ann. Oper. Res..

[12]  Zhe Liu,et al.  A New Hybrid Algorithm for the Multidimensional Knapsack Problem , 2011, ICIC.

[13]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[14]  Wayne Luk,et al.  A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation , 2009, FPGA '09.

[15]  Wenjian Luo,et al.  A Novel Multi-Population Genetic Algorithm for Multiple-Choice Multidimensional Knapsack Problems , 2010, ISICA.

[16]  Jin-Kao Hao,et al.  A hybrid approach for the 0-1 multidimensional knapsack problem , 2001, IJCAI 2001.

[17]  Enrique Alba,et al.  Cellular genetic algorithms , 2014, GECCO.

[18]  Hasan Pirkul,et al.  Computer and Database Location in Distributed Computer Systems , 1986, IEEE Transactions on Computers.

[19]  Pinaki Mazumder,et al.  A Systolic Architecture for High Speed Hypergraph Partitioning Using a Genetic Algorithm , 1993, Evo Workshops.

[20]  Enrique Alba,et al.  Introduction to Cellular Genetic Algorithms , 2008 .

[21]  Jin-Kao Hao,et al.  A Hybrid Approach for the 01 Multidimensional Knapsack problem , 2001, IJCAI.

[22]  Zuren Feng,et al.  An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.

[23]  Jens Gottlieb,et al.  On the Feasibility Problem of Penalty-Based Evolutionary Algorithms for Knapsack Problems , 2001, EvoWorkshops.

[24]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.