On the Convergence of Iterative Identification of Hammerstein Systems

An iterative identification algorithm of Hammerstein systems needs a proper initial condition to guarantee its convergence. In this paper, we propose a new algorithm by fixing the norm of the parameter estimates. The normalized algorithm ensures the convergence property under arbitrary nonzero initial conditions. The proofs of the property give a geometrical explanation on why the normalization guarantees the convergence. An additional contribution is that the static function in the Hammerstein system is extended to non-odd functions.

[1]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[2]  Wlodzimierz Greblicki,et al.  Continuous-time Hammerstein system identification , 2000, IEEE Trans. Autom. Control..

[3]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[4]  Han-Fu Chen,et al.  Pathwise convergence of recursive identification algorithms for Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[5]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  Wei Xing Zheng,et al.  Identification of a Class of Nonlinear Autoregressive Models With Exogenous Inputs Based on Kernel Machines , 2011, IEEE Transactions on Signal Processing.

[7]  Guoqi Li,et al.  Convergence of normalized iterative identification of Hammerstein systems , 2011, Syst. Control. Lett..

[8]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[9]  Wen-Xiao Zhao,et al.  Adaptive tracking and recursive identification for Hammerstein systems , 2009, Autom..

[10]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[11]  Le Yi Wang,et al.  Identification of Hammerstein Systems with Quantized Observations , 2010, SIAM J. Control. Optim..

[12]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..