Parallel Execution of Social Simulation Models in a Grid Environment

The exploration of agent-based social simulation models with a systematic analysis over its parameter space leads to a common problem. It takes too much time to get enough results for a significant analysis of the data generated by the simulation runs over those models. In this paper we show how one can minimise this problem by using grid computing. That is, constructing a social simulation model, designing an experiment and distributing the experiment over a computer grid, running a social simulation model with different parameter combinations in parallel. We supply a working example using the MASON framework and the JPPF framework.

[1]  Stephen John Turner,et al.  Large scale agent-based simulation on the grid , 2008, Future Gener. Comput. Syst..

[2]  Frank Schweitzer,et al.  How Groups Can Foster Consensus: The Case of Local Cultures , 2009, J. Artif. Soc. Soc. Simul..

[3]  Jari Saramäki,et al.  Modelling language competition: bilingualism and complex social networks , 2008 .

[4]  Carsten Franke,et al.  On Grid Performance Evaluation Using Synthetic Workloads , 2006, JSSPP.

[5]  Fabio Bellifemine,et al.  Developing Multi-Agent Systems with JADE (Wiley Series in Agent Technology) , 2007 .

[6]  Luis Antunes,et al.  Multi-Agent-Based Simulation VII, International Workshop, MABS 2006, Hakodate, Japan, May 8, 2006, Revised and Invited Papers , 2007, MABS.

[7]  Takao Terano Exploring the Vast Parameter Space of Multi-Agent Based Simulation , 2006, MABS.

[8]  João Balsa,et al.  Context Switching versus Context Permeability in Multiple Social Networks , 2009, EPIA.

[9]  Peter Tröger,et al.  Performance Optimization for Multi-agent Based Simulation in Grid Environments , 2008, 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID).

[10]  Agostino Poggi,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[11]  Mark D. Hill,et al.  Amdahl's Law in the Multicore Era , 2008, Computer.

[12]  Toshiharu Sugawara,et al.  Massively Multi-Agent Technology, AAMAS Workshops, MMAS 2006, LSMAS 2006, and CCMMS 2007 Hakodate, Japan, May 9, 2006, Honolulu, HI, USA, May 15, 2007, Selected and Revised Papers , 2008, MMAS/LSMAS/CCMMS.

[13]  Lars Lundberg,et al.  Performance prediction of multi-agent based simulation applications on the Grid , 2007 .

[14]  Michael J. North,et al.  Parallel agent-based simulation with Repast for High Performance Computing , 2013, Simul..

[15]  A. Campbell,et al.  Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[16]  Sean Luke,et al.  MASON: A Multiagent Simulation Environment , 2005, Simul..

[17]  Lyndon Walker Implementing a large scale social simulation using the New Zealand BeSTGRID computer network: a case study , 2009 .

[18]  Jarek Nabrzyski,et al.  Grid resource management: state of the art and future trends , 2004 .

[19]  Gabor Szemes,et al.  Templates for distributed agent-based simulations on a quasi-opportunistic grid , 2008, ANSS 2008.

[20]  Forrest Stonedahl,et al.  Genetic algorithms for the exploration of parameter spaces in agent-based models , 2011 .

[21]  Nick Collier,et al.  Repast: An extensible framework for agent simulation , 2001 .

[22]  James R. Larus,et al.  Software and the Concurrency Revolution , 2005, ACM Queue.