Dynamical regimes in an optically injected semiconductor ring laser

We theoretically investigate optical injection in semiconductor ring lasers. Starting from a rate-equation model for semiconductor ring lasers, we use numerical simulations and a bifurcation analysis to reveal all the relevant dynamical regimes that will unfold for different parameter values. Our numerical simulations reproduced the saddle-node and Hopf bifurcation observed in other optically injected laser systems, which typically yield the boundaries of the parameter region in which stable locking can occur. Nevertheless, the bifurcation diagram of the optically injected semiconductor ring laser shows differences with the ones of other semiconductor lasers. For low injection power, we not only observe the regular saddle-node locking bifurcation, we also reveal the presence of an additional family of saddle-node bifurcations and a new Hopf bifurcation. These new bifurcations lead to the coexistence of two injection-locked states in two separate parameter regions and a parameter region is revealed in which a frequency-locked limit cycle coexists with an injection-locked solution, providing an additional route to stable locking. Finally, a chaotic regime that extends to low values of the detuning and injection power is revealed.

[1]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[2]  Michal Lipson,et al.  All-optical switching on a silicon chip. , 2004, Optics letters.

[3]  T. Krauss,et al.  CW operation of semiconductor ring lasers , 1990 .

[4]  D Lenstra,et al.  New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. , 2007, Physical review letters.

[5]  Daan Lenstra,et al.  Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .

[6]  J. Danckaert,et al.  Topological insight into the non-arrhenius mode hopping of semiconductor ring lasers. , 2008, Physical review letters.

[7]  Simpson,et al.  Period-doubling cascades and chaos in a semiconductor laser with optical injection. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Marc Sorel,et al.  Dynamic behavior and locking of a semiconductor laser subjected to external injection , 1998 .

[9]  Daan Lenstra,et al.  Semiconductor lasers with optical injection and feedback , 1995 .

[10]  Neal B. Abraham,et al.  Polarization properties of vertical-cavity surface-emitting lasers , 1997 .

[11]  J. Danckaert,et al.  Multistable and excitable behavior in semiconductor ring lasers with broken Z2-symmetry , 2010 .

[12]  J. Danckaert,et al.  Exploring multistability in semiconductor ring lasers: theory and experiment. , 2009, Physical review letters.

[13]  J. Danckaert,et al.  Optical injection in semiconductor ring lasers: backfire dynamics. , 2008, Optics express.

[14]  C. Mirasso,et al.  Bistability and all-optical switching in semiconductor ring lasers , 2007 .

[15]  Thomas Erneux,et al.  Largely detuned injection-locked semiconductor lasers , 1999 .

[16]  Daan Lenstra,et al.  Multipulse excitability in a semiconductor laser with optical injection. , 2002, Physical review letters.

[17]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[18]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[19]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  J. Javaloyes,et al.  Emission Directionality of Semiconductor Ring Lasers: A Traveling-Wave Description , 2009, IEEE Journal of Quantum Electronics.

[21]  G. Huyet,et al.  Antiphase dynamics in a multimode semiconductor laser with optical injection , 2008, 0812.0525.

[22]  Siyuan Yu,et al.  Linear and nonlinear mode interactions in a semiconductor ring laser , 2005, IEEE Journal of Quantum Electronics.

[23]  J. Danckaert,et al.  Phase-space approach to directional switching in semiconductor ring lasers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Z. Wang,et al.  Theoretical and Experimental Studies on Bistability in Semiconductor Ring Lasers With Two Optical Injections , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Steven H. Strogatz,et al.  Nonlinear dynamics of a solid-state laser with injection , 1998 .

[26]  M. Sorel,et al.  Alternate oscillations in semiconductor ring lasers. , 2002, Optics letters.

[27]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[28]  J. Danckaert,et al.  Two-dimensional phase-space analysis and bifurcation study of the dynamical behaviour of a semiconductor ring laser , 2008, Journal of Physics B: Atomic, Molecular and Optical Physics.

[29]  K. Tai,et al.  Nonlinear dynamics induced by external optical injection in semiconductor lasers , 1997 .

[30]  H Thienpont,et al.  Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Mario Dagenais,et al.  Optical injection induced polarization bistability in vertical‐cavity surface‐emitting lasers , 1993 .

[32]  Silvano Donati,et al.  Chaos and locking in a semiconductor laser due to external injection , 1994 .

[33]  Goebel,et al.  Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  Jan Danckaert,et al.  Asymptotic approach to the analysis of mode-hopping in semiconductor ring lasers , 2009 .

[35]  Marc Sorel,et al.  Excitability in optical systems close to Z2-symmetry , 2010, 1108.3738.

[36]  Marc Sorel,et al.  Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model , 2003 .

[37]  J. Danckaert,et al.  Optical injection in semiconductor ring lasers , 2009 .