An airfoil optimization technique for wind turbines

Abstract Optimization algorithms coupled with computational fluid dynamics are used for wind turbines airfoils design. This differs from the traditional aerospace design process since the lift-to-drag ratio is the most important parameter and the angle of attack is large. Computational fluid dynamics simulations are performed with the incompressible Reynolds-averaged Navier–Stokes equations in steady state using a one equation turbulence model. A detailed validation of the simulations is presented and a computational domain larger than suggested in literature is shown to be necessary. Different approaches to parallelization of the computational code are addressed. Single and multiobjective genetic algorithms are employed and artificial neural networks are used as a surrogate model. The use of artificial neural networks is shown to reduce computational time by almost 50%.

[1]  Kyriakos C. Giannakoglou,et al.  A multilevel approach to single- and multiobjective aerodynamic optimization , 2008 .

[2]  Pierre Boulanger,et al.  CFD Based Wing Shape Optimization Through Gradient-Based Method , 2008 .

[3]  Edward N. Tinoco,et al.  Grid Quality and Resolution Issues from the Drag Prediction Workshop Series , 2008 .

[4]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[5]  A. Jahangirian,et al.  Airfoil shape parameterization for optimum Navier–Stokes design with genetic algorithm , 2007 .

[6]  T. Laverne,et al.  Experimental study of wind-turbine airfoil aerodynamics in high turbulence , 2002 .

[7]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[8]  Marios K. Karakasis,et al.  Inexact information aided, low‐cost, distributed genetic algorithms for aerodynamic shape optimization , 2003 .

[9]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[10]  S. Obayashi,et al.  Aerodynamic optimization with evolutionary algorithms , 1996 .

[11]  S. Obayashi,et al.  Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method , 2001 .

[12]  Wang Xudong,et al.  Shape Optimization of Wind Turbine Blades , 2009 .

[13]  Juan J. Alonso,et al.  Supersonic Business Jet Design using a Knowledge-Based Genetic Algorithm with an Adaptive, Unstructured Grid Methodology , 2003 .

[14]  Régis Duvigneau,et al.  Hybrid genetic algorithms and artificial neural networks for complex design optimization in CFD , 2004 .

[15]  Ibrahim Ozkol,et al.  Coupling dynamic mesh technique and heuristic algorithms in 3‐D‐tapered wing design , 2008 .

[16]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[17]  Sharon L. Padula,et al.  Probabilistic approach to free-form airfoil shape optimization under uncertainty , 2002 .

[18]  W. D. Beasley,et al.  Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications , 1973 .

[19]  D. Quagliarella,et al.  Airfoil and wing design through hybrid optimization strategies , 1998 .

[20]  Sergey Peigin,et al.  Robust optimization of 2D airfoils driven by full Navier–Stokes computations , 2004 .

[21]  George S. Dulikravich,et al.  Three-Dimensional Aerodynamic Shape Optimization Using Genetic and Gradient Search Algorithms , 1997 .

[22]  Abolfazl Khalkhali,et al.  Pareto Based Multi-Objective Optimization of Centrifugal Pumps Using CFD, Neural Networks and Genetic Algorithms , 2011 .

[23]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[24]  Maureen Hand,et al.  NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements , 2001 .

[25]  Jacques Periaux,et al.  Advances in Hierarchical, Parallel Evolutionary Algorithms for Aerodynamic Shape Optimisation , 2002 .

[26]  Kazuhiro Nakahashi,et al.  High-Fidelity Multidisciplinary Design Optimization of Aerostructural Wing Shape for Regional Jet , 2005 .

[27]  Helge Aagaard Madsen,et al.  Optimization method for wind turbine rotors , 1999 .

[28]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[29]  Richard P. Dwight,et al.  Flow simulation and shape optimization for aircraft design , 2007 .

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[31]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[32]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[33]  Luis M. Macareno,et al.  An improved meshing method for shape optimization of aerodynamic profiles using genetic algorithms , 2008 .

[34]  Jens Nørkær Sørensen,et al.  Aeroacoustic Modeling of Turbulent Airfoil Flows , 2001 .

[35]  Pietro Marco Congedo,et al.  Optimal airfoil shapes for viscous transonic flows of Bethe-Zel'dovich-Thompson fluids , 2008 .

[36]  Mariusz Pawlak,et al.  Optimisation of wind turbine blades , 2005 .

[37]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[38]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[39]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[40]  Nateri K. Madavan,et al.  AERODYNAMIC DESIGN USING NEURAL NETWORKS , 2000 .

[41]  W. González-Manteiga,et al.  Comparison of Kriging and Neural Networks With Application to the Exploitation of a Slate Mine , 2004 .

[42]  Martin Otto Laver Hansen,et al.  Aerodynamics of Wind Turbines , 2001 .

[43]  Bo Yin,et al.  Aerodynamic optimization of 3D wing based on iSIGHT , 2008 .