Synthesis and characterization of ZnO nanostructures

One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices.  Therefore, it is very important to realize the controllable growth of one-d ...

[1]  D. Langer,et al.  Electronic Core Levels of Zinc Chalcogenides , 1970 .

[2]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[3]  Jianzhang Zhou,et al.  ZnO nanorod light-emitting diodes fabricated by electrochemical approaches , 2008 .

[4]  Q. Zhao,et al.  Investigation on the origin of green light emission in ZnO bulk materials , 2009 .

[5]  G. Zou,et al.  Fabrication and Optical Properties of Large-Scale ZnO Nanotube Bundles via a Simple Solution Route , 2007 .

[6]  H. Morkoç,et al.  Zinc Oxide: Fundamentals, Materials and Device Technology , 2009 .

[7]  W. Y. Liang,et al.  Transmission Spectra of ZnO Single Crystals , 1968 .

[8]  A. Waag,et al.  ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region , 2004 .

[9]  Magnus Willander,et al.  Deep-level emissions influenced by O and Zn implantations in ZnO , 2005 .

[10]  P. H. Kasai,et al.  Electron Spin Resonance Studies of Donors and Acceptors in ZnO , 1963 .

[11]  Chun-Wei Chen,et al.  The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells , 2009 .

[12]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[13]  Zhong Lin Wang,et al.  Controlled synthesis and manipulation of ZnO nanorings and nanobows , 2005 .

[14]  J. Schneider,et al.  Index of Refraction of ZnO , 1968 .

[15]  R. Lamb,et al.  High-Quality ZnxMg1−xO Thin Films Deposited from a Single Molecular Source. Intimate Mixing as a Means to Improved Film Properties , 2008 .

[16]  Magnus Willander,et al.  Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy , 2010 .

[17]  Y. Qiu,et al.  ZnO Nanotetrapods: Controlled Vapor‐Phase Synthesis and Application for Humidity Sensing , 2007 .

[18]  Jie Zheng,et al.  Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties , 2006 .

[19]  Ziyu Wu,et al.  Photoluminescence and time-resolved photoluminescence of star-shaped ZnO nanostructures , 2006 .

[20]  Magnus Willander,et al.  Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition , 2009 .

[21]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[22]  G. Fang,et al.  Fabrication and characterization of ZnxMg1−xO thin films by dc magnetron sputtering with a composite target of AZO and Mg , 2003 .

[23]  Young Ran Park,et al.  Spectroscopic ellipsometry study of Zn1−xMgxO thin films deposited on Al2O3(0001) , 2000 .

[24]  R. Collins,et al.  Infrared reflectivity of zinc oxide , 1959 .

[25]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[26]  Se-Young Jeong,et al.  Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing , 2003 .

[27]  Kijung Yong,et al.  Controlled growth of well-aligned ZnO nanorod array using a novel solution method. , 2005, The journal of physical chemistry. B.

[28]  Yichun Liu,et al.  A novel method for measuring distribution of orientation of one‐dimensional ZnO using resonance Raman spectroscopy , 2005 .

[29]  Henryk Temkin,et al.  Size-dependent surface luminescence in ZnO nanowires , 2004 .

[30]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[31]  Krueger,et al.  First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. , 1993, Physical review. B, Condensed matter.

[32]  M. Willander,et al.  Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide , 2008 .

[33]  S. Yamauchi,et al.  Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy , 2004 .

[34]  P. H. Jefferson,et al.  Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations , 2009 .

[35]  O. Schirmer,et al.  The yellow luminescence of zinc oxide , 1970 .

[36]  Michael J. Callahan,et al.  Temperature dependence of Raman scattering in ZnO , 2007 .

[37]  M. Stutzmann,et al.  Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy , 2009 .

[38]  E. Fitzgerald,et al.  Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis , 2006 .

[39]  Masashi Kawasaki,et al.  Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature , 1997 .

[40]  Density-functional study of the structure and stability of ZnO surfaces , 2002, cond-mat/0206549.

[41]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[42]  Taihong Wang,et al.  Enhanced photocatalytic activity of ZnO nanotetrapods , 2005 .

[43]  D. C. Reynolds,et al.  Zeeman Effects in the Edge Emission and Absorption of ZnO , 1965 .

[44]  T. Chen,et al.  Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites. , 2006, The journal of physical chemistry. B.

[45]  Masashi Kawasaki,et al.  Optically pumped stimulated emission in ZnO/ZnMgO multiple quantum wells prepared by combinatorial techniques , 2001, SPIE OPTO.

[46]  O. Dulub STM Study of the Geometric and Electronic Structure of ZnO (0001)-Zn, (0001bar)-O, (101bar 0), and (1120bar) Surfaces , 2002 .

[47]  Li-ping Zhu,et al.  Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition , 2004 .

[48]  First-principles study of ground- and excited-state properties of MgO , ZnO , and CdO polymorphs , 2006, cond-mat/0604480.

[49]  S. J. Pearton,et al.  Zn0.9Mg0.1O∕ZnOp–n junctions grown by pulsed-laser deposition , 2004 .

[50]  O. Nur,et al.  Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices , 2009 .

[51]  Structure and interdiffusion of epitaxial ZnO/ZnMgO nanolayered thin films , 2008 .

[52]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2010 .

[53]  Jih-Jen Wu,et al.  Low‐Temperature Growth of Well‐Aligned ZnO Nanorods by Chemical Vapor Deposition. , 2002 .

[54]  W. Staude,et al.  Two-Photon Magnetoabsorption in ZnO , 1970 .

[55]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[56]  C. Bunn,et al.  The lattice-dimensions of zinc oxide , 1935 .

[57]  M. Willander,et al.  Growth of ZnO nanostructures by vapor–liquid–solid method , 2007 .

[58]  Jinghua Guo,et al.  Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation , 2004 .

[59]  Ahmad Umar,et al.  ZnO nanonails: synthesis and their application as glucose biosensor. , 2008, Journal of nanoscience and nanotechnology.

[60]  J. Y. Sze,et al.  Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation , 2007 .

[61]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[62]  D. A. Shirley,et al.  Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. [GaSb; InSb] , 1974 .

[63]  John F. Muth,et al.  Novel cubic ZnxMg1−xO epitaxial heterostructures on Si (100) substrates , 2001 .

[64]  R. Schelldorfer,et al.  Diffusion behaviour of Nb in yttria-stabilized zirconia single crystals: A SIMS, AFM and X-ray reflectometry investigations , 2006 .

[65]  M. Rao,et al.  Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano , 2007 .

[66]  T. Heinzel Mesoscopic electronics in solid state nanostructures , 2003 .

[67]  R. Roy,et al.  New High-Pressure Polymorph of Zinc Oxide , 1962, Science.

[68]  G. Dent,et al.  Modern Raman Spectroscopy: A Practical Approach , 2005 .

[69]  G. Thornton,et al.  Stability of polar oxide surfaces. , 2001, Physical review letters.

[70]  I. Ortenburger,et al.  Pseudopotential Band Structure of ZnO , 1973 .

[71]  W. Spicer,et al.  Location of theZn 3dStates in ZnO , 1971 .

[72]  Wenzhong Shen,et al.  Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique , 2002 .

[73]  H. C. Ong,et al.  Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films , 2001 .

[74]  Masataka Inoue,et al.  Growth of ZnO/Zn1−xMgxO films by pulsed laser ablation , 2005 .

[75]  S. Pearton,et al.  Minority carrier transport in p-type Zn0.9Mg0.1O doped with phosphorus , 2005 .

[76]  P. Mascher,et al.  Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese , 1992 .

[77]  Ziqiang Zhu,et al.  Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers , 2006 .

[78]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO(0⩽x⩽0.49) thin films , 2001 .

[79]  Z. Ye,et al.  Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods , 2008 .

[80]  R. Zhang,et al.  Correlation between green luminescence and morphology evolution of ZnO films , 2005 .

[81]  Y. Qiu,et al.  Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate , 2007 .

[82]  Sten-Eric Lindquist,et al.  Three-dimensional array of highly oriented crystalline ZnO microtubes , 2001 .

[83]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[84]  Dongsheng Xu,et al.  Single-Crystalline ZnO Nanotube Arrays on Conductive Glass Substrates by Selective Disolution of Electrodeposited ZnO Nanorods , 2007 .

[85]  J. Zhan,et al.  Fabrication and Gas‐Sensing Properties of Porous ZnO Nanoplates , 2008 .

[86]  R. Helbig,et al.  Band-edge emission in ZnO , 1976 .

[87]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[88]  M. Willander,et al.  Membrane potential measurements across a human fat cell using ZnO nanorods , 2009, Nanotechnology.

[89]  J. J. Hopfdeld Fine structure in the optical absorption edge of anisotropic crystals , 1960 .

[91]  M. Willander,et al.  Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method , 2009 .

[92]  Olga Dulub,et al.  Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. , 2003, Physical review letters.

[93]  S. Ramakrishna,et al.  Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells , 2009, Nanotechnology.

[94]  John F. Muth,et al.  Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys , 1999 .

[95]  J. D’Haen,et al.  Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter , 2009, Nanotechnology.

[96]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[97]  D. C. Reynolds,et al.  Exciton Spectrum of ZnO , 1966 .

[98]  H. Mehrer Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes , 2007 .

[99]  M. Willander,et al.  Effective Suppression of Surface Recombination in ZnO Nanorods Arrays during the Growth Process , 2010 .

[100]  Irena Knezevic,et al.  Electronic transport in nanometre-scale silicon-on-insulator membranes , 2006, Nature.

[101]  D. G. Thomas The exciton spectrum of zinc oxide , 1960 .

[102]  S. M. Durbin,et al.  Band Structure of ZnO from Resonant X-ray Emission Spectroscopy , 2008, 0805.4641.

[103]  Min Guo,et al.  Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties , 2005 .

[104]  I. Suemune,et al.  Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers , 2000 .

[105]  A. Waag,et al.  Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy , 2007 .

[106]  U. Rößler Energy Bands of Hexagonal II-VI Semiconductors , 1969 .

[107]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[108]  杨坤 ZnO Nanotube Arrays as Biosensors for Glucose , 2009 .

[109]  W. Baer Faraday Rotation in ZnO: Determination of the Electron Effective Mass , 1967 .

[110]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[111]  Atsuo Yamada,et al.  Two-dimensional electron gas in Zn polar ZnMgO∕ZnO heterostructures grown by radical source molecular beam epitaxy , 2006 .

[112]  G. Choppin Electronic , 1988 .

[113]  B. Segall Intrinsic Absorption "Edge" in II-VI Semiconducting Compounds with the Wurtzite Structure , 1967 .

[114]  D. H. Mash,et al.  Light-emitting diodes , 1977, Nature.

[115]  M. J. Klopfstein,et al.  Temperature dependent exciton photoluminescence of bulk ZnO , 2003 .

[116]  Sangsig Kim,et al.  ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders , 2003 .

[117]  R. Kling,et al.  Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy , 2003 .

[118]  D. C. Reynolds,et al.  Excited Terminal States of a Bound Exciton-Donor Complex in ZnO , 1969 .

[119]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[120]  Min Han,et al.  Wide-band gap oxide alloy: BeZnO , 2006 .

[121]  W. Marsden I and J , 2012 .

[122]  Ching,et al.  Electronic, optical, and structural properties of some wurtzite crystals. , 1993, Physical review. B, Condensed matter.

[123]  Jinhui Song,et al.  Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. , 2008, Nano letters.

[124]  B. R. Patton Solid State Physics: Solid State Physics , 2001 .

[125]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[126]  C. Youn,et al.  Optical properties of BeZnO layers studied by photoluminescence spectroscopy , 2007 .

[127]  E. G. Bylander Surface effects on the low‐energy cathodoluminescence of zinc oxide , 1978 .

[128]  Yakup Hames,et al.  Electrochemically grown ZnO nanorods for hybrid solar cell applications , 2010 .

[129]  R. L. Weiher Optical Properties of Free Electrons in ZnO , 1966 .

[130]  M. Willander,et al.  Identification of oxygen and zinc vacancy optical signals in ZnO , 2006 .

[131]  H. Koinuma,et al.  STRUCTURE AND OPTICAL PROPERTIES OF ZNO/MG0.2ZN0.8O SUPERLATTICES , 1999 .

[132]  Takashi Minemoto,et al.  Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering , 2000 .

[133]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[134]  R. Dingle Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide , 1969 .

[135]  Jean-Paul Mosnier,et al.  Surface excitonic emission and quenching effects in Zno nanowire/nanowall systems : Limiting effects on device potential , 2005 .

[136]  Xia Fan,et al.  Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates , 2008 .

[137]  Masashi Kawasaki,et al.  Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films , 1998 .

[138]  Xiangyang Ma,et al.  From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties , 2007 .

[139]  Chen-Hao Ku,et al.  Bandgap engineering of well-aligned Zn1 − xMgxO nanorods grown by metalorganic chemical vapor deposition , 2005 .

[140]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[141]  Hitoshi Tampo,et al.  Strong excitonic transition of Zn1−xMgxO alloy , 2007 .

[142]  Gareth M. Fuge,et al.  Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods , 2004 .

[143]  J. Zhong,et al.  The influence of processing conditions on point defects and luminescence centers in ZnO , 1993 .

[144]  M. Willander,et al.  Surface recombination in ZnO nanorods grown by chemical bath deposition , 2008 .

[145]  D. G. Thomas,et al.  Polariton Absorption Lines , 1965 .

[146]  Z. Liao,et al.  Effect of surface states on electron transport in individual ZnO nanowires , 2007 .

[147]  M. Oshikiri,et al.  Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation , 1999 .

[148]  D. Look,et al.  High spatial resolution thermal conductivity of bulk ZnO (0001) , 2002 .

[149]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[150]  X. W. Sun,et al.  Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition , 2006 .

[151]  Zhong Lin Wang,et al.  Nanopropeller arrays of zinc oxide , 2004 .

[152]  Dejun Fu,et al.  The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation , 2007 .

[153]  B. Gregg,et al.  Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[154]  B. Marí,et al.  Synthesis of ZnCdO thin films by electrodeposition , 2007 .

[155]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[156]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[157]  Z. Liao,et al.  Surface effects on photoluminescence of single ZnO nanowires , 2008 .

[158]  D. Shen,et al.  Growth and optical properties of faceted hexagonal ZnO nanotubes. , 2006, The journal of physical chemistry. B.

[159]  Haidong Yu,et al.  A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. , 2005, Journal of the American Chemical Society.

[160]  J. Freeouf Far-Ultraviolet Reflectance of II-VI Compounds and Correlation with the Penn-Phillips Gap , 1973 .

[161]  Faqiang Xu,et al.  The electronic structure and spectral properties of ZnO and its defects , 2003 .

[162]  S. Pearton,et al.  Zinc oxide bulk, thin films and nanostructures : processing, properties and applications , 2006 .

[163]  I. Tanaka,et al.  The formation of a rock-salt type ZnO thin film by low-level alloying with MgO , 2004 .

[164]  Shui-Tong Lee,et al.  ZnS/ZnO Heterojunction Nanoribbons , 2009 .

[165]  W. Whang,et al.  Low-temperature solution approach toward highly aligned ZnO nanotip arrays , 2004 .

[166]  Akira Ohtomo,et al.  Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films , 2001 .

[167]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[168]  James A. Snyder,et al.  LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO , 2000 .

[169]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[170]  Jung‐Kun Lee,et al.  Variation of structural, electrical, and optical properties of Zn1−xMgxO thin films , 2006 .

[171]  Krüger,et al.  Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials. , 1995, Physical review. B, Condensed matter.

[172]  Bixia Lin,et al.  Green luminescent center in undoped zinc oxide films deposited on silicon substrates , 2001 .

[173]  A. R. Hutson Piezoelectric Scattering and Phonon Drag in ZnO and CdS , 1961 .

[174]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[175]  H. C. Ong,et al.  Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor deposition , 2003 .

[176]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .