Algorithmic Aspects of the S-Labeling Problem

Given a graph \(G = (V,E)\) of order n and maximum degree \(\varDelta \), the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping \(\phi : V \rightarrow \{1, 2 \ldots n\}\), such that \(\mathrm{SL}_{\phi }(G)=\sum _{\{u,v\} \in E} \min \{\phi (u), \phi (v)\}\) is minimized. A preliminary study of the S-labeling problem has been undertaken in [9]; here, we prolongate this study, and focus more specifically on algorithmic results concerning the problem. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then show that the S-Labeling problem is polynomial-time solvable for (sets of) caterpillars. We also provide upper and lower bounds on \(\mathrm{SL}_{\phi }(G)\), that in turn allow us to determine polynomial-time approximation algorithms for different classes of graphs such as regular graphs, connected graphs and forests, but also for general graphs. Concerning exact algorithms, we show that the problem is solvable in \(O^*(1.44225^{n\varDelta })\) time, and that deciding whether there exist a labeling \(\phi \) of G such that \(\mathrm{SL}_{\phi }(G) \le |E| + k\) is solvable in \(O^*(2^{2\sqrt{k}}\ (2 \sqrt{k})!)\).

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[3]  Herbert S. Wilf,et al.  The number of maximal independent sets in a tree , 1986 .

[4]  Stéphane Vialette,et al.  Packing of (0, 1)-matrices , 2006, RAIRO Theor. Informatics Appl..

[5]  Frank Thomson Leighton,et al.  A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  David R. Karger,et al.  A randomized fully polynomial time approximation scheme for the all terminal network reliability problem , 1995, STOC '95.

[8]  Donald L. Adolphson,et al.  Single Machine Job Sequencing with Precedence Constraints , 1977, SIAM J. Comput..

[9]  D. Adolphson Optimal linear-ordering. , 1973 .

[10]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[11]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[12]  Stefan Szeider,et al.  The Linear Arrangement Problem Parameterized Above Guaranteed Value , 2007, Theory of Computing Systems.

[13]  Guillaume Fertin,et al.  On the S-Labeling problem , 2009, Electron. Notes Discret. Math..

[14]  S. Bezrukov Edge Isoperimetric Problems on Graphs , 2007 .

[15]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[16]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[17]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[18]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[19]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[22]  J. L. Brenner Labeling of Graphs , 1983 .

[23]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.