Time-symmetric quantum theory of smoothing.
暂无分享,去创建一个
[1] Alberto Barchielli,et al. Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes , 1983 .
[2] Stephen M. Barnett,et al. Quantum retrodiction in open systems , 2002 .
[3] V. Sandberg,et al. ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .
[4] Seth Lloyd,et al. Quantum theory of optical temporal phase and instantaneous frequency , 2008 .
[5] Finn. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[6] M. Zakai. On the optimal filtering of diffusion processes , 1969 .
[7] H. Mabuchi,et al. Quantum trajectories for realistic detection , 2002 .
[8] Nicolas Gisin,et al. Quantum approach to coupling classical and quantum dynamics , 1999, quant-ph/9902069.
[9] D. Fraser,et al. The optimum linear smoother as a combination of two optimum linear filters , 1969 .
[10] H. M. Wiseman,et al. Adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light , 2004 .
[11] Alberto Barchielli,et al. A model for the macroscopic description and continual observations in quantum mechanics , 1982 .
[12] L. Diosi,et al. Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems , 2001 .
[13] J. Lebowitz,et al. TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT , 1964 .
[14] STANDARD QUANTUM LIMITS FOR BROADBAND POSITION MEASUREMENT , 1998, quant-ph/9801039.
[15] H. Carmichael. An open systems approach to quantum optics , 1993 .
[16] P. Warszawski,et al. Quantum trajectories for realistic photodetection: I. General formalism , 2002 .
[17] Boucher,et al. Semiclassical physics and quantum fluctuations. , 1988, Physical review. D, Particles and fields.
[18] H. Kushner. On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory , 1964 .
[19] Seth Lloyd,et al. Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time , 2008, 0902.3034.
[20] S M Barnett,et al. Master equation for retrodiction of quantum communication signals. , 2001, Physical review letters.
[21] S. Berman,et al. Nuovo Cimento , 1983 .
[22] R. L. Stratonovich. CONDITIONAL MARKOV PROCESSES , 1960 .
[23] H.M. Wiseman,et al. Adaptive phase measurements for narrowband squeezed beams , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.
[24] David Q. Mayne,et al. A solution of the smoothing problem for linear dynamic systems , 1966, Autom..
[25] W. Schäfer,et al. Direkte allosterische Wechselwirkung von Sauerstoff und Bicarbonat: N-Acetyl-Ala-Ser-Phe, die N-terminale Sequenz der β-Ketten der Hämoglobine des Nilkrokodils (Crocodylus niloticus) und des Mississippi krokodils (Alligator mississippiensis) / Direct Allosteric Interaction of Oxygen and Bicarbonate: , 1981 .
[26] Hideo Mabuchi,et al. Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.
[27] Vaidman,et al. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.
[28] A. C. Doherty,et al. Sensitivity optimization in quantum parameter estimation , 2001 .
[29] É. Pardoux,et al. quations du filtrage non linaire de la prdiction et du lissage , 1982 .
[30] Stephen M. Barnett,et al. Retrodiction for quantum optical communications , 2000 .
[31] L. Mandel,et al. Optical Coherence and Quantum Optics , 1995 .
[32] H. M. Wiseman,et al. Quantum trajectories for realistic photodetection: II. Application and analysis. , 2003 .
[33] H. M. Wiseman,et al. Adaptive quantum measurements of a continuously varying phase , 2002 .
[34] Y. Aharonov,et al. Complete description of a quantum system at a given time , 1991 .
[35] W. Gawlik,et al. Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.