Time-symmetric quantum theory of smoothing.

Smoothing is an estimation technique that takes into account both past and future observations and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.

[1]  Alberto Barchielli,et al.  Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes , 1983 .

[2]  Stephen M. Barnett,et al.  Quantum retrodiction in open systems , 2002 .

[3]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[4]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency , 2008 .

[5]  Finn Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[6]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[7]  H. Mabuchi,et al.  Quantum trajectories for realistic detection , 2002 .

[8]  Nicolas Gisin,et al.  Quantum approach to coupling classical and quantum dynamics , 1999, quant-ph/9902069.

[9]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[10]  H. M. Wiseman,et al.  Adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light , 2004 .

[11]  Alberto Barchielli,et al.  A model for the macroscopic description and continual observations in quantum mechanics , 1982 .

[12]  L. Diosi,et al.  Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems , 2001 .

[13]  J. Lebowitz,et al.  TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT , 1964 .

[14]  STANDARD QUANTUM LIMITS FOR BROADBAND POSITION MEASUREMENT , 1998, quant-ph/9801039.

[15]  H. Carmichael An open systems approach to quantum optics , 1993 .

[16]  P. Warszawski,et al.  Quantum trajectories for realistic photodetection: I. General formalism , 2002 .

[17]  Boucher,et al.  Semiclassical physics and quantum fluctuations. , 1988, Physical review. D, Particles and fields.

[18]  H. Kushner On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory , 1964 .

[19]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time , 2008, 0902.3034.

[20]  S M Barnett,et al.  Master equation for retrodiction of quantum communication signals. , 2001, Physical review letters.

[21]  S. Berman,et al.  Nuovo Cimento , 1983 .

[22]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[23]  H.M. Wiseman,et al.  Adaptive phase measurements for narrowband squeezed beams , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[24]  David Q. Mayne,et al.  A solution of the smoothing problem for linear dynamic systems , 1966, Autom..

[25]  W. Schäfer,et al.  Direkte allosterische Wechselwirkung von Sauerstoff und Bicarbonat: N-Acetyl-Ala-Ser-Phe, die N-terminale Sequenz der β-Ketten der Hämoglobine des Nilkrokodils (Crocodylus niloticus) und des Mississippi krokodils (Alligator mississippiensis) / Direct Allosteric Interaction of Oxygen and Bicarbonate: , 1981 .

[26]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[27]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[28]  A. C. Doherty,et al.  Sensitivity optimization in quantum parameter estimation , 2001 .

[29]  É. Pardoux,et al.  quations du filtrage non linaire de la prdiction et du lissage , 1982 .

[30]  Stephen M. Barnett,et al.  Retrodiction for quantum optical communications , 2000 .

[31]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[32]  H. M. Wiseman,et al.  Quantum trajectories for realistic photodetection: II. Application and analysis. , 2003 .

[33]  H. M. Wiseman,et al.  Adaptive quantum measurements of a continuously varying phase , 2002 .

[34]  Y. Aharonov,et al.  Complete description of a quantum system at a given time , 1991 .

[35]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.