Metric properties of generalized Sierpiński graphs over stars

Abstract For a graph G , an infinite series of self-similar graphs is formed by the generalized Sierpinski graphs S G t , t ≥ 1 . In the case when G is complete we have the classical Sierpinski graphs S n t = S K n t . In this paper the Wiener index, the Wiener complexity, and the metric dimension of their antipode family S K 1 , n t are determined. Along the way some other properties of the family are also obtained such as the number of vertex and edge orbits of the automorphism group of S K 1 , n t .

[1]  Yaser Alizadeh,et al.  On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs , 2018, Appl. Math. Comput..

[2]  Hongbo Hua,et al.  Wiener index, Harary index and Hamiltonicity of graphs , 2016, 1609.00114.

[3]  Sandi Klavzar,et al.  The Tower of Hanoi - Myths and Maths , 2013 .

[4]  Niko Tratnik,et al.  The Szeged index and the Wiener index of partial cubes with applications to chemical graphs , 2016, Appl. Math. Comput..

[5]  Agelos Georgakopoulos,et al.  Hitting Times, Cover Cost, and the Wiener Index of a Tree , 2013, J. Graph Theory.

[6]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[7]  Ľubomír Šoltés,et al.  Transmission in graphs: A bound and vertex removing , 1991 .

[8]  N. Duncan Leaves on trees , 2014 .

[10]  Yaser Alizadeh,et al.  Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes , 2013 .

[11]  Petr A. Golovach,et al.  Metric Dimension of Bounded Tree-length Graphs , 2016, SIAM J. Discret. Math..

[12]  Sandi Klavzar,et al.  Connectivity and some other properties of generalized Sierpiński graphs , 2018 .

[13]  Yaser Alizadeh,et al.  Complexity of Topological Indices: The Case of Connective Eccentric Index , 2016 .

[14]  Aline Parreau,et al.  Problèmes d'identification dans les graphes , 2012 .

[15]  Zhongzhi Zhang,et al.  Random walks on dual Sierpinski gaskets , 2011 .

[16]  B. Mohar,et al.  How to compute the Wiener index of a graph , 1988 .

[17]  Kinkar Chandra Das,et al.  On maximum Wiener index of trees and graphs with given radius , 2017, J. Comb. Optim..

[18]  Sylvain Gravier,et al.  Generalized Sierpiński graphs 1 , 2011 .

[19]  Juan A. Rodríguez-Velázquez,et al.  On the General Randić index of polymeric networks modelled by generalized Sierpiński graphs , 2019, Discret. Appl. Math..

[20]  Aida Abiad,et al.  On the Wiener index, distance cospectrality and transmission-regular graphs , 2017, Discret. Appl. Math..

[21]  Tomáš Vetrík The Metric Dimension of Circulant Graphs , 2017, Canadian Mathematical Bulletin.

[22]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[23]  Sandi Klavzar,et al.  A survey and classification of Sierpiński-type graphs , 2017, Discret. Appl. Math..

[24]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[25]  K. Somasundaram,et al.  Total coloring for generalized Sierpinski graphs , 2015, Australas. J Comb..

[26]  Shuchao Li,et al.  Cacti with n-vertices and t cycles having extremal Wiener index , 2017, Discret. Appl. Math..

[27]  S. Klavžar,et al.  Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .

[28]  Sandi Klavÿzar,et al.  On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension , 2013 .

[29]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[30]  Kannan Balakrishnan,et al.  Strongly distance-balanced graphs and graph products , 2009, Eur. J. Comb..

[31]  Juan A. Rodríguez-Velázquez,et al.  The strong metric dimension of generalized Sierpiński graphs with pendant vertices , 2017, Ars Math. Contemp..

[32]  Riste Skrekovski,et al.  Centralization of transmission in networks , 2015, Discret. Math..

[33]  Alejandro Estrada-Moreno,et al.  On distances in generalized Sierpinski graphs , 2016, 1608.00769.

[34]  Ortrud R. Oellermann,et al.  Comparing the metric and strong dimensions of graphs , 2017, Discret. Appl. Math..

[35]  Juan A. Rodríguez-Velázquez,et al.  Computing the Metric Dimension of a Graph from Primary Subgraphs , 2017, Discuss. Math. Graph Theory.

[36]  Fatemeh Ramezani,et al.  On the Roman domination number of generalized Sierpinski graphs , 2016, 1605.06918.