Metric properties of generalized Sierpiński graphs over stars
暂无分享,去创建一个
Yaser Alizadeh | Ehsan Estaji | Sandi Klavžar | Marko Petkovšek | S. Klavžar | M. Petkovšek | Y. Alizadeh | E. Estaji
[1] Yaser Alizadeh,et al. On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs , 2018, Appl. Math. Comput..
[2] Hongbo Hua,et al. Wiener index, Harary index and Hamiltonicity of graphs , 2016, 1609.00114.
[3] Sandi Klavzar,et al. The Tower of Hanoi - Myths and Maths , 2013 .
[4] Niko Tratnik,et al. The Szeged index and the Wiener index of partial cubes with applications to chemical graphs , 2016, Appl. Math. Comput..
[5] Agelos Georgakopoulos,et al. Hitting Times, Cover Cost, and the Wiener Index of a Tree , 2013, J. Graph Theory.
[6] H. Wiener. Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.
[7] Ľubomír Šoltés,et al. Transmission in graphs: A bound and vertex removing , 1991 .
[8] N. Duncan. Leaves on trees , 2014 .
[10] Yaser Alizadeh,et al. Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes , 2013 .
[11] Petr A. Golovach,et al. Metric Dimension of Bounded Tree-length Graphs , 2016, SIAM J. Discret. Math..
[12] Sandi Klavzar,et al. Connectivity and some other properties of generalized Sierpiński graphs , 2018 .
[13] Yaser Alizadeh,et al. Complexity of Topological Indices: The Case of Connective Eccentric Index , 2016 .
[14] Aline Parreau,et al. Problèmes d'identification dans les graphes , 2012 .
[15] Zhongzhi Zhang,et al. Random walks on dual Sierpinski gaskets , 2011 .
[16] B. Mohar,et al. How to compute the Wiener index of a graph , 1988 .
[17] Kinkar Chandra Das,et al. On maximum Wiener index of trees and graphs with given radius , 2017, J. Comb. Optim..
[18] Sylvain Gravier,et al. Generalized Sierpiński graphs 1 , 2011 .
[19] Juan A. Rodríguez-Velázquez,et al. On the General Randić index of polymeric networks modelled by generalized Sierpiński graphs , 2019, Discret. Appl. Math..
[20] Aida Abiad,et al. On the Wiener index, distance cospectrality and transmission-regular graphs , 2017, Discret. Appl. Math..
[21] Tomáš Vetrík. The Metric Dimension of Circulant Graphs , 2017, Canadian Mathematical Bulletin.
[22] Ioan Tomescu,et al. Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..
[23] Sandi Klavzar,et al. A survey and classification of Sierpiński-type graphs , 2017, Discret. Appl. Math..
[24] I. Gutman,et al. Wiener Index of Hexagonal Systems , 2002 .
[25] K. Somasundaram,et al. Total coloring for generalized Sierpinski graphs , 2015, Australas. J Comb..
[26] Shuchao Li,et al. Cacti with n-vertices and t cycles having extremal Wiener index , 2017, Discret. Appl. Math..
[27] S. Klavžar,et al. Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .
[28] Sandi Klavÿzar,et al. On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension , 2013 .
[29] I. Gutman,et al. Wiener Index of Trees: Theory and Applications , 2001 .
[30] Kannan Balakrishnan,et al. Strongly distance-balanced graphs and graph products , 2009, Eur. J. Comb..
[31] Juan A. Rodríguez-Velázquez,et al. The strong metric dimension of generalized Sierpiński graphs with pendant vertices , 2017, Ars Math. Contemp..
[32] Riste Skrekovski,et al. Centralization of transmission in networks , 2015, Discret. Math..
[33] Alejandro Estrada-Moreno,et al. On distances in generalized Sierpinski graphs , 2016, 1608.00769.
[34] Ortrud R. Oellermann,et al. Comparing the metric and strong dimensions of graphs , 2017, Discret. Appl. Math..
[35] Juan A. Rodríguez-Velázquez,et al. Computing the Metric Dimension of a Graph from Primary Subgraphs , 2017, Discuss. Math. Graph Theory.
[36] Fatemeh Ramezani,et al. On the Roman domination number of generalized Sierpinski graphs , 2016, 1605.06918.