Photonic crystal optical waveguides for on-chip Bose-Einstein condensates

We propose an on-chip optical waveguide for Bose-Einstein condensates based on the evanescent light fields created by surface states of a photonic crystal. It is shown that the modal properties of these surface states can be tailored to confine the condensate at distances from the chip surface significantly longer that those that can be reached by using conventional index-contrast guidance. We numerically demonstrate that by index-guiding the surface states through two parallel waveguides, the atomic cloud can be confined in a two-dimensional trap at about 1 m above the structure using a power of 0.1 mW.

[1]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[2]  Evan J Reed,et al.  Maxwell equation simulations of coherent optical photon emission from shock waves in crystals. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Dye-Zone A. Chen,et al.  Extraordinary optical transmission through subwavelength holes in a polaritonic silicon dioxide film , 2007 .

[4]  Marin Soljacic,et al.  Coupled-mode theory for general free-space resonant scattering of waves , 2007 .

[5]  Marin Soljacic,et al.  Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances , 2006 .

[6]  J. Arnold,et al.  Kilometer-Long Ordered Nanophotonic Devices by Preform-to-Fiber Fabrication , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Marin Soljacic,et al.  Switching through symmetry breaking in coupled nonlinear micro-cavities. , 2006, Optics express.

[8]  Steven G. Johnson,et al.  Single-photon all-optical switching using waveguide-cavity quantum electrodynamics , 2006 .

[9]  Steven G. Johnson,et al.  Improving accuracy by subpixel smoothing in the finite-difference time domain. , 2006, Optics letters.

[10]  M. Soljačić,et al.  Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Marin Soljacić,et al.  Thermal emission and design in 2D-periodic metallic photonic crystal slabs. , 2006, Optics express.

[12]  Marin Soljacić,et al.  Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Ofer Shapira,et al.  Large-scale optical-field measurements with geometric fibre constructs , 2006, Nature materials.

[14]  J. Joannopoulos,et al.  Tetrastack: Colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast , 2006 .

[15]  J. Joannopoulos,et al.  Active materials embedded in photonic crystals and coupled to electromagnetic radiation , 2006 .

[16]  Ayman F. Abouraddy,et al.  Thermal‐Sensing Fiber Devices by Multimaterial Codrawing , 2006 .

[17]  M. Soljačić,et al.  Comment on "Explanation of the inverse Doppler effect observed in nonlinear transmission lines". , 2006, Physical review letters.

[18]  Steven G. Johnson,et al.  Doppler radiation emitted by an oscillating dipole moving inside a photonic band-gap crystal. , 2006, Physical review letters.

[19]  Peter T. Rakich,et al.  Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal , 2006, Nature materials.

[20]  M. Ibanescu,et al.  Enhanced photonic band-gap confinement via Van Hove saddle point singularities. , 2006, Physical review letters.

[21]  M. Soljačić,et al.  Coherent Optical Photons from Shock Waves in Crystals , 2006 .

[22]  M. W. Klein,et al.  Atom fiber for omnidirectional guiding of cold neutral atoms. , 2004, Optics letters.

[23]  F. Kien,et al.  Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber , 2004, quant-ph/0407107.

[24]  F. Kien,et al.  Atom trapping and guiding with a subwavelength-diameter optical fiber , 2004, physics/0404110.

[25]  D. Rychtarik,et al.  Two-dimensional Bose-Einstein condensate in an optical surface trap. , 2003, Physical review letters.

[26]  V. Vuletić,et al.  Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. , 2003, Physical review letters.

[27]  S. Chu,et al.  Designing Neutral-Atom Nanotraps With Integrated Optical Waveguides , 2002 .

[28]  D. Pritchard,et al.  Propagation of Bose-Einstein condensates in a magnetic waveguide. , 2002, Physical review letters.

[29]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[30]  E. Wright,et al.  Optical dipole traps and atomic waveguides based on Bessel light beams , 2001, cond-mat/0101215.

[31]  V. Minogin,et al.  Electromagnetic trapping of cold atoms , 2000 .

[32]  W. Robertson Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays , 1999 .

[33]  M. Prentiss,et al.  Substrate-based atom waveguide using guided two-color evanescent light fields , 1999, physics/9907014.

[34]  R. Grimm,et al.  Optical dipole traps for neutral atoms , 1999, physics/9902072.

[35]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[36]  D. Stamper-Kurn,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1997, cond-mat/9711273.

[37]  James F. Babb,et al.  Long-range interactions of lithium atoms , 1996, physics/9612011.

[38]  P. Halevi,et al.  Propagation constant — limited surface modes in dielectric superlattices☆ , 1996 .

[39]  Ito,et al.  Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. , 1996, Physical review letters.

[40]  Cornell,et al.  Laser-guided atoms in hollow-core optical fibers. , 1995, Physical review letters.

[41]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[42]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[43]  K. J. Dean,et al.  Waves and Fields in Optoelectronics: Prentice-Hall Series in Solid State Physical Electronics , 1984 .

[44]  H. Haus Waves and fields in optoelectronics , 1983 .

[45]  P. Yeh,et al.  Optical surface waves in periodic layered media , 1978 .

[46]  Amnon Yariv,et al.  Observation of confined propagation in Bragg waveguides , 1977 .

[47]  M. Ibanescu,et al.  Surface-emitting fiber lasers. , 2006, Optics express.