Nonintrusive approximation of parametrized limits of matrix power algorithms – application to matrix inverses and log-determinants

We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.

[1]  T. W. Anderson,et al.  Maximum-likelihood estimation of the parameters of a multivariate normal distribution☆ , 1985 .

[2]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[3]  R. J. Martin Approximations to the determinant term in gaussian maximum likelihood estimation of some spatial models , 1992 .

[4]  D. Kleinbaum,et al.  Regression models for ordinal responses: a review of methods and applications. , 1997, International journal of epidemiology.

[5]  H. Altay Güvenir,et al.  An overview of regression techniques for knowledge discovery , 1999, The Knowledge Engineering Review.

[6]  D. Rovas,et al.  Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems , 2000 .

[7]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[8]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[9]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[10]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[11]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[12]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[13]  M. Bergmann Optimisation aérodynamique par réduction de modèle POD et contrôle optimal : application au sillage laminaire d'un cylindre circulaire , 2004 .

[14]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[15]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[16]  S. Sen Reduced-Basis Approximation and A Posteriori Error Estimation for Many-Parameter Heat Conduction Problems , 2008 .

[17]  Yunong Zhang,et al.  Log-det approximation based on uniformly distributed seeds and its application to Gaussian process regression , 2008 .

[18]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[19]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[20]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[21]  Adrien Leygue,et al.  An overview of the proper generalized decomposition with applications in computational rheology , 2011 .

[22]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[23]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[24]  Abhijit Dasgupta,et al.  Brief review of regression‐based and machine learning methods in genetic epidemiology: the Genetic Analysis Workshop 17 experience , 2011, Genetic epidemiology.

[25]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[26]  A. Nouy,et al.  Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics , 2012 .

[27]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[28]  Yvon Maday,et al.  A Non intrusive reduced basis method : application to computational fluid dynamics , 2013 .

[29]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[30]  Fabien Casenave,et al.  A nonintrusive reduced basis method applied to aeroacoustic simulations , 2014, Adv. Comput. Math..

[31]  Christos Boutsidis,et al.  A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix , 2015, ArXiv.

[32]  V. R. Joseph,et al.  Maximum projection designs for computer experiments , 2015 .

[33]  Anthony Nouy,et al.  Interpolation of Inverse Operators for Preconditioning Parameter-Dependent Equations , 2015, SIAM J. Sci. Comput..

[34]  Gang Luo,et al.  A review of automatic selection methods for machine learning algorithms and hyper-parameter values , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[35]  Yvon Maday,et al.  Convergence analysis of the Generalized Empirical Interpolation Method , 2016, SIAM J. Numer. Anal..

[36]  Fabien Casenave,et al.  Variants of the Empirical Interpolation Method: Symmetric formulation, choice of norms and rectangular extension , 2016, Appl. Math. Lett..

[37]  Christopher C. Pain,et al.  Non‐intrusive reduced‐order modeling for multiphase porous media flows using Smolyak sparse grids , 2017 .