Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation

[1]  K. Chao,et al.  Highly Dispersed Metal Nanoparticles in Functionalized SBA-15 , 2003 .

[2]  D. Goodman,et al.  Oxidation Catalysis by Supported Gold Nano-Clusters , 2002 .

[3]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[4]  B. Gates,et al.  Simultaneous Presence of Cationic and Reduced Gold in Functioning MgO-Supported CO Oxidation Catalysts: Evidence from X-ray Absorption Spectroscopy , 2002 .

[5]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[6]  A. Datye,et al.  CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex , 2002 .

[7]  F. Schüth,et al.  A systematic study of the synthesis conditions for the preparation of highly active gold catalysts , 2002 .

[8]  P. Claus,et al.  Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions , 2002 .

[9]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[10]  F. Renzo,et al.  EPR investigations on the formation of micelle-templated silica , 2001 .

[11]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[12]  S. Kaskel,et al.  29-P-17-Zirconia nanoparticles in ordered mesoporous material SBA-15 , 2001 .

[13]  H. Kung,et al.  Regeneration of Au/?-Al 2O 3 deactivated by CO oxidation , 2001 .

[14]  J. S. Lee,et al.  Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts , 1999 .

[15]  Y. Sugahara,et al.  Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation , 1999 .

[16]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[17]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[18]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[19]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[20]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[21]  M. Haruta,et al.  The reactivities of dimethylgold(III)β-diketone on the surface of TiO2 : A novel preparation method for Au catalysts , 1997 .

[22]  M. Haruta,et al.  Structural analysis of Au/Mg(OH)2 during deactivation by Debye function analysis , 1996 .

[23]  T. Shido,et al.  Highly Selective Catalytic Reduction of NO by H2over Au0and Au(I) Impregnated in NaY Zeolite Catalysts , 1996 .

[24]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[25]  M. Vannice,et al.  Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts , 1993 .

[26]  A. Wokaun,et al.  CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism , 1992 .

[27]  S. Gardner,et al.  Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation , 1991 .

[28]  B. Delmon,et al.  Thin-films of Supported Gold Catalysts for Co Detection , 1990 .

[29]  L. T. Zhuravlev Concentration of hydroxyl groups on the surface of amorphous silicas , 1987 .