Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry

Townsend et al. (1) agree that we explained that the apparent relationship (2) between foliar nitrogen (%N) and near-infrared (NIR) canopy reflectance was largely attributable to structure (which is in turn caused by variation in fraction of broadleaf canopy). Our conclusion that the observed correlation with %N was spurious (i.e., lacking a causal basis) is, thus, clearly justified: we demonstrated that structure explained the great majority of observed correlation, where the structural influence was derived precisely via reconciling the observed correlation with radiative-transfer theory. What this also suggests is that such correlations, although observed, do not uniquely provide information on canopy biochemical constituents. We, therefore, disagree with the assertion in ref. 1 that we “did not provide an adequate rationale for the inference that %N and other leaf properties cannot be characterized from imaging spectroscopy”; our analysis showed precisely that. Our analysis also led to the conclusion that “NIR and/or SW broadband satellite data cannot be directly linked to leaf-level processes,” and any such link must be indirect and will be a function of structure. This is true for all wavelengths in the interval 423–855 nm (figure 7B and figure S2 in ref. 3), not primarily for the 800- to 850-nm spectral band, as misstated in ref. 1. None of the leaf biochemical constituents can be accurately estimated without accounting for canopy structural effects.

[1]  Susan L Ustin,et al.  Remote sensing of canopy chemistry , 2013, Proceedings of the National Academy of Sciences.

[2]  Philip Lewis,et al.  Hyperspectral remote sensing of foliar nitrogen content , 2012, Proceedings of the National Academy of Sciences.

[3]  Canopy nitrogen and albedo from remote sensing: What exactly are we seeing? , 2009, Proceedings of the National Academy of Sciences.

[4]  S. Frolking,et al.  Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks , 2008, Proceedings of the National Academy of Sciences.

[5]  Philip A. Townsend,et al.  Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data , 2013, Proceedings of the National Academy of Sciences.