De Bakker-Zucker processes revisited

The sets of compact and of closed subsets of a metric space endowed with the Hausdorff metric are studied. Both give rise to a functor on the category of 1-bounded metric spaces and nonexpansive functions. It is shown that the former functor has a terminal coalgebra and that the latter does not.

[1]  J. W. de Bakker,et al.  Processes and the Denotational Semantics of Concurrency , 1982, Inf. Control..

[2]  Jan A. Bergstra,et al.  Linear Time and Branching Time Semantics for Recursion with Merge , 1983, Theor. Comput. Sci..

[3]  R. Milner Mathematical Centre Tracts , 1976 .

[4]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[5]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[6]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1989, J. Comput. Syst. Sci..

[7]  Jan Willem Klop,et al.  The process of De Bakker and Zucker represent bisimulation equivalence classes , 1989 .

[8]  J. W. de Bakker,et al.  Compactness in Semantics for Merge and Fair Merge , 1983, Logic of Programs.

[9]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[10]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[11]  Matthew Prior,et al.  Letter from “J” , 1863, The Dental register.

[12]  Mike Paterson David Michael Ritchie Park (1935-1990) in Memoriam , 1994, Theor. Comput. Sci..

[13]  Mila E. Majster-Cederbaum,et al.  Towards a Foundation for Semantics in Complete Metric Spaces , 1991, Inf. Comput..

[14]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[15]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[16]  Maurice Nivat,et al.  The metric space of infinite trees. Algebraic and topological properties , 1980, Fundam. Informaticae.

[17]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[18]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[19]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[20]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[21]  Franck van Breugel,et al.  A Note on Hyperspaces and Terminal Coalgebras , 1999, CMCS.

[22]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[23]  J. W. de Bakker,et al.  Ten Years of Concurrency Semantics; Selected Papers of the Amsterdam Concurrency Group , 1992 .

[24]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.