Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity

Invasive plants alter community structure, threatening ecosystem function and biodiversity, but little information is available on whether invasive species richness responds to environmental conditions in the same way that richness of native plants does. We surveyed submerged and floating-leaved plants in 99 Connecticut (northeast USA) lakes and ponds, collecting quantitative data on abundance and frequency. We used multiple linear and logistic regression to determine which environmental conditions were correlated with species richness of invasive and native plants. Independent variables included lake area, maximum depth, pH, alkalinity, conductivity, phosphorus concentration, productivity, and dominance (the proportional abundance of the most abundant and frequently found species), plus two estimates of human activity. Species richness of both native and invasive richness was correlated with alkalinity and human activity. Native richness also increased with water clarity, lake area, and productivity; invasive species richness also rose with pH. We found no evidence that richness of one group affected richness of the other. We also investigated patterns of dominance and found that native plants were as likely to become dominant as invasive species. Dominance occurred overwhelmingly in shallow lakes with high productivity. Resume´ : Les plantes envahissantes modifient la structure des communautes en menacant les fonctions des ecosystemes et leur biodiversite ´, mais on connaoˆt peu de chose asavoir si la richesse en especes envahissantes reagit aux conditions du milieu de la meme facon que la richesse en plantes indigenes. Les auteurs ont suivi les plantes submergees et afeuilles flottantes dans 99 lacs et etang du nord-est des Etats-Unis, en reunissant les donnees d'abondance et de frequence. Ils ont utilisela regression lineaire multiple et logistique pour determiner quelles conditions environnementales montrent une cor- relation avec les richesses en especes des plantes envahissantes et indigenes. Les variables independantes comprennent la surface des lacs, la profondeur maximum, le pH, l'alcalinite ´, la conductivite ´, la teneur en phosphore, la productiviteet la dominance (l'abondance proportionnelle des especes les plus frequentes et les plus abondantes), ainsi que deux valeurs es- timees pour l'activitehumaine. La richesse en especes indigenes aussi bien qu'en especes envahissantes montre une corre ´- lation avec l'alcaliniteet l'activitehumaine. La richesse en especes indigenes augmente egalement avec la clartede l'eau, la surface du lac et la productivite ´; la richesse en especes adventices augmente aussi avec le pH. On ne percoit aucune preuve que la richesse d'un groupe affecte la richesse de l'autre. Les auteurs ont egalement examinele patron de la domi- nance pour constater que les plantes indigenes ont autant de chance de devenir dominantes que les especes envahissantes. On retrouve la dominance surtout dans les lacs peu profonds aforte productivite ´. Mots-cles: conditions abiotiques, biodiversite ´, structure des communautes, dominance, lacs, macrophytes. (Traduit par la Redaction)

[1]  M. Ritchie,et al.  THE EFFECT OF AQUATIC PLANT SPECIES RICHNESS ON WETLAND ECOSYSTEM PROCESSES , 2002 .

[2]  B. Seddon Aquatic macrophytes as limnological indicators , 1972 .

[3]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[4]  James Woodward,et al.  Biological invasions as global environmental change , 1996 .

[5]  C. Boylen,et al.  The submersed macrophyte communities of adirondack lakes (New York, U.S.A.) of varying degrees of acidity , 1985 .

[6]  J. White,et al.  Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness. , 2007, Ecology.

[7]  J. Moyle Some Chemical Factors Influencing the Distribution of Aquatic Plants in Minnesota , 1945 .

[8]  H. Mooney,et al.  The evolutionary impact of invasive species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. William Rockwell,et al.  Summary of a Survey of the Literature on the Economic Impact of Aquatic Weeds , 2003 .

[10]  C. B. Hellquist CORRELATION OF ALKALINITY AND THE DISTRIBUTION OF POTAMOGETON IN NEW-ENGLAND , 1980 .

[11]  C. Scott Findlay,et al.  Effect of Invasive Plant Species on Temperate Wetland Plant Diversity , 2004 .

[12]  L. Lesack,et al.  The influence of water transparency on the distribution and abundance of macrophytes among lakes of the Mackenzie Delta, Western Canadian Arctic , 2002 .

[13]  B. Rørslett Principal determinants of aquatic macrophyte richness in northern European lakes , 1991 .

[14]  K. Sand‐Jensen,et al.  Photosynthetic carbon assimilation in aquatic macrophytes , 1991 .

[15]  G. Bugbee,et al.  The relative importance of local conditions and regional processes in structuring aquatic plant communities , 2010 .

[16]  B. Freedman,et al.  Aquatic plants of acid lakes in Kejimkujik National Park, Nova Scotia; floristic composition and relation to water chemistry , 1986 .

[17]  D. Simberloff,et al.  BIOTIC INVASIONS: CAUSES, EPIDEMIOLOGY, GLOBAL CONSEQUENCES, AND CONTROL , 2000 .

[18]  W. M. Lonsdale,et al.  GLOBAL PATTERNS OF PLANT INVASIONS AND THE CONCEPT OF INVASIBILITY , 1999 .

[19]  T. Blackburn,et al.  The role of propagule pressure in explaining species invasions. , 2005, Trends in ecology & evolution.

[20]  M. Moody,et al.  Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. Howard-Williams,et al.  The role of recreational boat traffic in interlake dispersal of macrophytes: a New Zealand case study. , 1985 .

[22]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[23]  Stanley A. Nichols,et al.  Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis , 2004, Hydrobiologia.

[24]  R. S. Capers,et al.  A comparison of two sampling techniques in the study of submersed macrophyte richness and abundance , 2000 .

[25]  Charles C. Elton,et al.  The Ecology of Invasions by Animals and Plants. , 1959 .

[26]  Samuel J. McNaughton,et al.  Dominance and the Niche in Ecological Systems , 1970 .

[27]  Jonathan M. Levine,et al.  Elton revisited: a review of evidence linking diversity and invasibility , 1999 .

[28]  D. Pimentel,et al.  Environmental and Economic Costs of Nonindigenous Species in the United States , 2000 .

[29]  J. H. Zar,et al.  Biostatistical Analysis (5th Edition) , 1984 .

[30]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[31]  D. Tilman Biodiversity: Population Versus Ecosystem Stability , 1995 .

[32]  P. Chesson,et al.  Community ecology theory as a framework for biological invasions , 2002 .

[33]  David Pimentel,et al.  Willard W. Cochrane, The Curse of American Agricultural Abundance: A Sustainable Solution, University of Nebraska Press, Lincoln (2003) ISBN 0803215290 145 pp , 2005 .

[34]  Donald H. Les,et al.  Aquatic and wetland plants of northeastern North America , 2001 .

[35]  Thomas J. Stohlgren,et al.  EXOTIC PLANT SPECIES INVADE HOT SPOTS OF NATIVE PLANT DIVERSITY , 1999 .

[36]  David Tilman,et al.  Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors , 2000 .

[37]  J. W. G. Lund,et al.  A Manual on Methods for Measuring Primary Production in Aquatic Environments. , 1970 .

[38]  Awwa,et al.  Standard Methods for the examination of water and wastewater , 1999 .

[39]  E. Weiher,et al.  Alterations in Aquatic Plant Community Structure following Liming of an Acidic Adirondack Lake , 1994 .

[40]  T. J. Breen,et al.  Biostatistical Analysis (2nd ed.). , 1986 .

[41]  D. Srivastava,et al.  Aquatic vegetation of Nova Scotian lakes differing in acidity and trophic status , 1995 .

[42]  Robert R Parmenter,et al.  The spread of invasive species and infectious disease as drivers of ecosystem change , 2008 .

[43]  L. L. Wolf,et al.  Dominance and the Niche in Ecological Systems , 1970, Science.

[44]  D. Pimentel,et al.  Update on the environmental and economic costs associated with alien-invasive species in the United States , 2005 .

[45]  M. Scheffer Ecology of Shallow Lakes , 1997, Population and Community Biology Series.

[46]  R. S. Capers,et al.  Introduction of Glossostigma (Phrymaceae) to North America: a taxonomic and ecological overview. , 2006, American journal of botany.

[47]  G. Crow,et al.  Aquatic and Wetland Plants of Northeastern North America, Volume II: A Revised and Enlarged Edition of Norman C. Fassett's A Manual of Aquatic Plants, Volume II: Angiosperms: Monocotyledons , 1999 .

[48]  James H Brown,et al.  Species Invasions Exceed Extinctions on Islands Worldwide: A Comparative Study of Plants and Birds , 2002, The American Naturalist.

[49]  D. Tilman,et al.  Productivity and sustainability influenced by biodiversity in grassland ecosystems , 1996, Nature.

[50]  D. Charles,et al.  Aquatic macrophytes in Adirondack (New York) lakes: patterns of species composition in relation to environment , 1988 .