Growth, optical and electrical properties of pure and Mn-doped Na0.5Bi0.5TiO3 lead-free piezoelectric crystals

[1]  Huidong Li,et al.  Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic-phase-boundary composition , 2004 .

[2]  Y. Yamashita,et al.  Effect of MnO additive on Pb[(Zn1/3Nb2/3)1–x Tix]O3 single crystals , 1998 .

[3]  Q. Yin,et al.  Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics , 2002 .

[4]  R. Pankrath,et al.  Relaxor Ferroelectrics—From Random Field Models to Domain State Physics , 2004 .

[5]  T. Takenaka Piezoelectric properties of some lead-free ferroelectric ceramics , 1999 .

[6]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[7]  Tu,et al.  Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3. , 1994, Physical review. B, Condensed matter.

[8]  Xiangyong Zhao,et al.  Growth and characterization of Na0.5Bi0.5TiO3–BaTiO3 lead-free piezoelectric crystal by the TSSG method , 2008 .

[9]  J. Lee,et al.  Structure, piezoelectric properties and ferroelectric properties of (Na0.5Bi0.5)1−xBaxTiO3 system , 2004 .

[10]  J. A. Tilton An investigation to locate and correct errors in the card file prepared by the Joint Committee on Powder Diffraction Standards (JCPDS) , 1982 .

[11]  T. Kruzina,et al.  X-ray study of phase transitions in efrroelectric Na0.5Bi0.5TiO3 , 1982 .

[12]  Danfeng Yang,et al.  Growth and some electrical properties of lead-free piezoelectric crystals (Na1/2Bi1/2)TiO3 and (Na1/2Bi1/2)TiO3–BaTiO3 prepared by a Bridgman method , 2005 .

[13]  A. Safari,et al.  Processing and Electromechanical Properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 Ceramics , 1997 .

[14]  Jung-Kun Lee,et al.  The role of Cation Vacancies on Microstructure and Piezoelectricity of Lanthanum-Substituted (Na1/2Bi1/2)TiO3 Ceramics , 2004 .

[15]  K. Berglund,et al.  The structure of aqueous solutions of some dihydrogen orthophosphates by laser Raman spectroscopy , 1987 .

[16]  F. Gao,et al.  Effect of MnO2 Addition on the Structure and Electrical Properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 Ceramics , 2004 .

[17]  S. Priya,et al.  Modeling of fatigue behavior in relaxor piezocrystals: Improved characteristics by Mn substitution , 2002 .

[18]  Tu,et al.  Critical acoustic behavior of the relaxor ferroelectric Na1/2Bi1/2TiO3 in the intertransition region. , 1995, Physical review. B, Condensed matter.

[19]  Hajime Nagata,et al.  Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary , 2003 .

[20]  Y. Yamashita,et al.  Crystal Growth and Electrical Properties of Lead-Free Piezoelectric Material (Na1/2Bi1/2)TiO3–BaTiO3 , 2001 .

[21]  Haosu Luo,et al.  The analysis of morphology evolution in KABO crystal growth , 2006 .

[22]  Thomas R. Shrout,et al.  Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn1/3Nb2/3)O3−0.08PbTiO3 single crystal , 2004 .

[23]  Kenji Uchino,et al.  Mn-Modified Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics: Improved Mechanical Quality Factors for High-Power Transducer Applications , 2000 .

[24]  S. Priya,et al.  Crystal Growth and Piezoelectric Properties of Mn-Substituted Pb(Zn1/3Nb2/3)O3 Single Crystal , 2001 .

[25]  Eric Cross,et al.  Materials science: Lead-free at last , 2004, nature.

[26]  M. He,et al.  Enhancement of ferroelectric properties of Na1∕2Bi1∕2TiO3-BaTiO3 single crystals by Ce dopings , 2007 .

[27]  X. X. Wang,et al.  Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics , 2003 .

[28]  J. Suchanicz Investigations of the phase transitions in Na0.5Bi0.5TiO3 , 1995 .

[29]  Huidong Li,et al.  Electrical Properties of La3+-Doped (Na0.5Bi0.5)0.94Ba0.06TiO3 Ceramics , 2003 .

[30]  H. Nagata,et al.  Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics , 2001 .

[31]  X. Zhou,et al.  Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics , 2005 .

[32]  Zhenxiang Cheng,et al.  Microprobe of structure of crystal/liquid interface boundary layers , 2001 .

[33]  D. Viehland,et al.  Ferroelectric behaviours dominated by mobile and randomly quenched impurities in modified lead zirconatetitanate ceramics , 1997 .

[34]  H. Gu,et al.  Lead-free In2O3-doped (Bi0.5Na0.5)0.93Ba0.07TiO3 ceramics synthesized by direct reaction sintering , 2007 .

[35]  J. Lee,et al.  Effect of MnO addition on structure and electrical properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by citrate method , 2006 .

[36]  Toshimasa Suzuki,et al.  Effects of Manganese Addition on Piezoelectric Properties of Pb(Zr0.5Ti0.5)O3 , 1992 .

[37]  Lin Shou.,et al.  Images on locally separable metric spaces , 1997 .

[38]  Zhang Xue-hua,et al.  Growth units model of anion coordination-polyhedra and its application to crystal growth , 2004 .

[39]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[40]  S. Priya,et al.  Dielectric and piezoelectric properties of the Mn-substituted Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal , 2002 .

[41]  A. Ando,et al.  Study of the Valence State of the Manganese Ions in PbTiO3 Ceramics by Means of ESR , 1998 .

[42]  Yet-Ming Chiang,et al.  Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family , 1998 .

[43]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[44]  T. Takenaka,et al.  Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics , 1990 .

[45]  R. Selim,et al.  Coulometric titration with higher oxidation states of manganese: Electrolytic generation and stability of +3 manganese in sulfuric acid media , 1959 .

[46]  S. Vakhrushev,et al.  Phase transitions and soft modes in sodium bismuth titanate , 1985 .

[47]  Hao Wang,et al.  Microstructure and electrical properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics , 2007 .