Approximate Jacobian Matrices for Nonsmooth Continuous Maps and C 1 -Optimization

The notion of approximate Jacobian matrices is introduced for a continuous vector-valued map. It is shown, for instance, that the Clarke generalized Jacobian is an approximate Jacobian for a locally Lipschitz map. The approach is based on the idea of convexificators of real-valued functions. Mean value conditions for continuous vector-valued maps and Taylor's expansions for continuously Gâteaux differentiable functions (i.e., C1-functions) are presented in terms of approximate Jacobians and approximate Hessians, respectively. Second-order necessary and sufficient conditions for optimality and convexity of C1-functions are also given.

[1]  S. Schaible Generalized Monotone Nonsmooth Maps , 1996 .

[2]  Xiaoqi Yang,et al.  Convex composite multi-objective nonsmooth programming , 1993, Math. Program..

[3]  S. Swaminathan A characterization of convex functions , 1993 .

[4]  F. Clarke Necessary conditions for nonsmooth problems in-optimal control and the calculus of variations , 1991 .

[5]  Vaithilingam Jeyakumar,et al.  On optimality conditions in nonsmooth inequality constrained minimization , 1987 .

[6]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[7]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[8]  Lionel Thibault,et al.  On generalized differentials and subdifferentials of Lipschitz vector-valued functions , 1982 .

[9]  Vaithilingam Jeyakumar Composite Nonsmooth Programming with Gâteaux Differentiability , 1991, SIAM J. Optim..

[10]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[11]  Xiaoqi Yang,et al.  Convex composite minimization withC1,1 functions , 1995 .

[12]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[13]  R. Tyrrell Rockafellar,et al.  Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives , 1989, Math. Oper. Res..

[14]  Alexander D. Ioffe,et al.  Limiting subhessians, limiting subjets and their calculus , 1997 .

[15]  B. Mordukhovich,et al.  On Nonconvex Subdifferential Calculus in Banach Spaces , 1995 .

[16]  On Nonconvex Subdieren tial Calculus in Banach Spaces 1 , 1995 .

[17]  Xiaoqi Yang,et al.  Approximate generalized Hessians and Taylor's expansions for continuously Gâteaux differentiable functions , 1999 .

[18]  Dinh The Luc Taylor's Formula for Ck, 1 Functions , 1995, SIAM J. Optim..

[19]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[20]  Philippe Michel,et al.  A generalized derivative for calm and stable functions , 1992, Differential and Integral Equations.

[21]  Vladimir F. Demyanov,et al.  Hunting for a Smaller Convex Subdifferential , 1997, J. Glob. Optim..

[22]  Vaithilingam Jeyakumar,et al.  Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators , 1999 .

[23]  Vera Zeidan,et al.  Generalized hessian forC1,1 functions in infinite dimensional normed spaces , 1996, Math. Program..

[24]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[25]  Vaithilingam Jeyakumar,et al.  A generalized mean-value theorem and optimality conditions in composite nonsmooth minimization , 1995 .

[26]  Roberto Cominetti,et al.  A generalized second-order derivative in nonsmooth optimization , 1990 .

[27]  J. Warga,et al.  Fat homeomorphisms and unbounded derivate containers , 1981 .

[28]  Xiaoqi Yang,et al.  Generalized second-order directional derivatives and optimization with C , 1992 .

[29]  Xiaoqi Yang Generalized second-order derivatives and optimality conditions , 1994 .

[30]  V. F. Demʹi︠a︡nov,et al.  Constructive nonsmooth analysis , 1995 .