Microglia emerge as central players in brain disease

[1]  A. Sheth,et al.  The Knowledge-driven Exploration of Integrated Biomedical Knowledge Sources Facilitates the Generation of New Hypotheses , 2011, LISC.

[2]  S. Bilbo,et al.  Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity , 2018, Glia.

[3]  S. Bilbo,et al.  Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity , 2017, Glia.

[4]  W. Wurst,et al.  The FTD‐like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism , 2017, The EMBO journal.

[5]  Baptiste N. Jaeger,et al.  An environment-dependent transcriptional network specifies human microglia identity , 2017, Science.

[6]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[7]  Beth Stevens,et al.  Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice , 2017, Science Translational Medicine.

[8]  R. Auten,et al.  Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner , 2017, Front. Synaptic Neurosci..

[9]  Anastasia G. Efthymiou,et al.  Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk , 2017, Molecular Neurodegeneration.

[10]  F. C. Bennett,et al.  Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures , 2017, Neuron.

[11]  Michael D. Cahalan,et al.  iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases , 2017, Neuron.

[12]  Tuan Leng Tay,et al.  Microglia across the lifespan: from origin to function in brain development, plasticity and cognition , 2017, The Journal of physiology.

[13]  D. Maric,et al.  Differentiation of human and murine induced pluripotent stem cells to microglia-like cells , 2017, Nature Neuroscience.

[14]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[15]  Adrian Danek,et al.  Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury , 2016, Science Translational Medicine.

[16]  E. Boyden,et al.  Gamma frequency entrainment attenuates amyloid load and modifies microglia , 2016, Nature.

[17]  P. Lombroso,et al.  Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. , 2016, Cell reports.

[18]  H. Kettenmann,et al.  The “Big‐Bang” for modern glial biology: Translation and comments on Pío del Río‐Hortega 1919 series of papers on microglia , 2016, Glia.

[19]  B. Stevens,et al.  Increasing the neurological-disease toolbox using iPSC-derived microglia , 2016, Nature Medicine.

[20]  Li-Huei Tsai,et al.  Efficient derivation of microglia-like cells from human pluripotent stem cells , 2016, Nature Medicine.

[21]  A. McAllister,et al.  Maternal immune activation: Implications for neuropsychiatric disorders , 2016, Science.

[22]  I. Amit,et al.  Microglia development follows a stepwise program to regulate brain homeostasis , 2016, Science.

[23]  F. Rosenbauer,et al.  Transcriptome‐based profiling of yolk sac‐derived macrophages reveals a role for Irf8 in macrophage maturation , 2016, The EMBO journal.

[24]  H. Tozaki-Saitoh,et al.  Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain , 2016, Nature Communications.

[25]  R. Ransohoff A polarizing question: do M1 and M2 microglia exist? , 2016, Nature Neuroscience.

[26]  Lino C. Gonzalez,et al.  TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia , 2016, Neuron.

[27]  S. Linnarsson,et al.  Origin, fate and dynamics of macrophages at central nervous system interfaces , 2016, Nature Immunology.

[28]  L. McCullough,et al.  Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones , 2016, Aging.

[29]  Robert E. Schmidt,et al.  A complement–microglial axis drives synapse loss during virus-induced memory impairment , 2016, Nature.

[30]  Steffen Jung,et al.  Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression , 2016, eLife.

[31]  S. Bilbo,et al.  Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[32]  Ben A. Barres,et al.  Complement and microglia mediate early synapse loss in Alzheimer mouse models , 2016, Science.

[33]  Michelle K. Cahill,et al.  Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation , 2016, Cell.

[34]  M. Tremblay,et al.  Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling , 2016, PLoS biology.

[35]  James R. Tribble,et al.  Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma , 2016, Molecular Neurodegeneration.

[36]  M. Colonna,et al.  TREM2 variants: new keys to decipher Alzheimer disease pathogenesis , 2016, Nature Reviews Neuroscience.

[37]  Grayson O. Sipe,et al.  Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex , 2016, Nature Communications.

[38]  A. Nimmerjahn,et al.  TAM receptors regulate multiple features of microglial physiology , 2016, Nature.

[39]  K. Blennow,et al.  sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer's disease and associate with neuronal injury markers , 2016, EMBO molecular medicine.

[40]  R. Cunha,et al.  Microglia‐derived purines modulate mossy fibre synaptic transmission and plasticity through P2X4 and A1 receptors , 2016, The European journal of neuroscience.

[41]  J. Rogers,et al.  Analysis of the Putative Role of CR1 in Alzheimer’s Disease: Genetic Association, Expression and Function , 2016, PloS one.

[42]  M. McCarthy,et al.  Multifaceted origins of sex differences in the brain , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[44]  J. Hardy,et al.  Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease , 2016, Current Opinion in Neurobiology.

[45]  C. Wellman,et al.  Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex , 2016, Brain, Behavior, and Immunity.

[46]  B. Stevens,et al.  New insights on the role of microglia in synaptic pruning in health and disease , 2016, Current Opinion in Neurobiology.

[47]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[48]  A. Basbaum,et al.  Injured sensory neuron-derived CSF1 induces microglia proliferation and DAP12-dependent pain , 2015, Nature Neuroscience.

[49]  Self-Concept Variables Sex Differences in , 2016 .

[50]  G. Burnstock Purinergic Mechanisms and Pain. , 2016, Advances in pharmacology.

[51]  R. Ransohoff,et al.  Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer's disease. , 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  R. North P2X receptors , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  L. Garcia-Segura,et al.  Sex differences in glia reactivity after cortical brain injury , 2015, Glia.

[54]  Beth Stevens,et al.  Do glia drive synaptic and cognitive impairment in disease? , 2015, Nature Neuroscience.

[55]  B. Stevens,et al.  Microglia Function in Central Nervous System Development and Plasticity. , 2015, Cold Spring Harbor perspectives in biology.

[56]  S. Younkin,et al.  Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)* , 2015, The Journal of Biological Chemistry.

[57]  T. Owens,et al.  Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation , 2015, Front. Immunol..

[58]  Jianpeng Sheng,et al.  Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. , 2015, Immunity.

[59]  Frauke Zipp,et al.  Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. , 2015, Immunity.

[60]  Loren J. Martin,et al.  Different immune cells mediate mechanical pain hypersensitivity in male and female mice , 2015, Nature Neuroscience.

[61]  Jeremy A. Miller,et al.  Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis , 2015, Acta Neuropathologica Communications.

[62]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[63]  F. Ginhoux,et al.  C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. , 2015, Immunity.

[64]  R. Ransohoff,et al.  TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models , 2015, The Journal of experimental medicine.

[65]  F. Geissmann,et al.  Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors , 2014, Nature.

[66]  D. Holtzman,et al.  TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model , 2015, Cell.

[67]  N. J. Allen,et al.  Astrocytes Control Synapse Formation, Function, and Elimination. , 2015, Cold Spring Harbor perspectives in biology.

[68]  J. Stender,et al.  Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities , 2015, Cell.

[69]  T. Michoel,et al.  Microglial brain regiondependent diversity and selective regional sensitivities to aging , 2015 .

[70]  M. Endres,et al.  The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer’s disease , 2014, Brain Structure and Function.

[71]  Shannon E. Ellis,et al.  Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism , 2014, Nature Communications.

[72]  Basavaraj Hooli,et al.  A three-dimensional human neural cell culture model of Alzheimer’s disease , 2014, Nature.

[73]  F. Ginhoux,et al.  Microglia modulate wiring of the embryonic forebrain. , 2014, Cell reports.

[74]  B. MacVicar,et al.  Activation of Neuronal NMDA Receptors Triggers Transient ATP-Mediated Microglial Process Outgrowth , 2014, The Journal of Neuroscience.

[75]  Ukpong B. Eyo,et al.  Neuronal Hyperactivity Recruits Microglial Processes via Neuronal NMDA Receptors and Microglial P2Y12 Receptors after Status Epilepticus , 2014, The Journal of Neuroscience.

[76]  S. Goerdt,et al.  Macrophage activation and polarization: nomenclature and experimental guidelines. , 2014, Immunity.

[77]  S. Beggs,et al.  Sublime Microglia: Expanding Roles for the Guardians of the CNS , 2014, Cell.

[78]  J. Molinuevo,et al.  TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis , 2014, Science Translational Medicine.

[79]  D. Holtzman,et al.  Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2 , 2014, Molecular Neurodegeneration.

[80]  T. Mak,et al.  Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain , 2014, Nature Communications.

[81]  Blake A. Richards,et al.  Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy , 2014 .

[82]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[83]  Guy C. Brown,et al.  Microglial phagocytosis of live neurons , 2014, Nature Reviews Neuroscience.

[84]  Francesco Sforazzini,et al.  Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior , 2014, Nature Neuroscience.

[85]  T. Bliss,et al.  Synaptic plasticity in health and disease: introduction and overview , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[86]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[87]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[88]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[89]  A. Bachstetter,et al.  The role of microglia in adult hippocampal neurogenesis , 2013, Front. Cell. Neurosci..

[90]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[91]  P. Patterson,et al.  Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development , 2013, Brain, Behavior, and Immunity.

[92]  Shaomin Li,et al.  Impaired glutamate recycling and GluN2B‐mediated neuronal calcium overload in mice lacking TGF‐β1 in the CNS , 2013, Glia.

[93]  Bradley T. Hyman,et al.  Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta , 2013, Neuron.

[94]  Ben A. Barres,et al.  Emerging roles of astrocytes in neural circuit development , 2013, Nature Reviews Neuroscience.

[95]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[96]  F. Ginhoux,et al.  Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. , 2013, Immunity.

[97]  J. Feldon,et al.  Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice , 2013, Science.

[98]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[99]  M. McCarthy,et al.  Microglia Are Essential to Masculinization of Brain and Behavior , 2013, The Journal of Neuroscience.

[100]  L. Garcia-Segura,et al.  Gonadal hormones and the control of reactive gliosis , 2013, Hormones and Behavior.

[101]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[102]  A. Hofman,et al.  Variant of TREM2 associated with the risk of Alzheimer's disease. , 2013, The New England journal of medicine.

[103]  Antoine G. Godin,et al.  Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl− homeostasis , 2013, Nature Neuroscience.

[104]  Emily K. Lehrman,et al.  The “quad‐partite” synapse: Microglia‐synapse interactions in the developing and mature CNS , 2013, Glia.

[105]  Yasuomi Ouchi,et al.  Microglial activation in young adults with autism spectrum disorder. , 2013, JAMA psychiatry.

[106]  Chang Liu,et al.  Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. , 2012, Developmental cell.

[107]  I. Campbell,et al.  IFN Regulatory Factor 8 Is a Key Constitutive Determinant of the Morphological and Molecular Properties of Microglia in the CNS , 2012, PloS one.

[108]  S. Beggs,et al.  P2X4R+ microglia drive neuropathic pain , 2012, Nature Neuroscience.

[109]  M. Merad,et al.  GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. , 2012, Immunity.

[110]  B. Barres,et al.  The complement system: an unexpected role in synaptic pruning during development and disease. , 2012, Annual review of neuroscience.

[111]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[112]  B. Barres,et al.  Genomic Analysis of Reactive Astrogliosis , 2012, The Journal of Neuroscience.

[113]  K. Ozato,et al.  IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype , 2012, Cell reports.

[114]  D. Zaykin,et al.  Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity , 2012, Nature Medicine.

[115]  Brian A Williams,et al.  Microglia in the Cerebral Cortex in Autism , 2012, Journal of Autism and Developmental Disorders.

[116]  S. Bilbo,et al.  Sex differences in microglial colonization of the developing rat brain , 2012, Journal of neurochemistry.

[117]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[118]  T. Wyss-Coray,et al.  Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. , 2012, Cold Spring Harbor perspectives in medicine.

[119]  M. Arfan Ikram,et al.  Variant of TREM 2 Associated with the Risk of Alzheimer ’ s Disease , 2012 .

[120]  A. Singleton,et al.  TREM2 Variants in Alz hei mer's Disease , 2012 .

[121]  O. Pascual,et al.  Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission , 2011, Proceedings of the National Academy of Sciences.

[122]  P. Bickford,et al.  CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity , 2011, The Journal of Neuroscience.

[123]  A. Nimmerjahn,et al.  The Role of Microglia in the Healthy Brain , 2011, The Journal of Neuroscience.

[124]  Michael J. Cole,et al.  Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats , 2011, Neurobiology of Aging.

[125]  J. Pollard,et al.  Absence of Colony Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain Development and Olfactory Deficits , 2011, PloS one.

[126]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[127]  P. Patterson,et al.  Maternal infection and immune involvement in autism. , 2011, Trends in molecular medicine.

[128]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[129]  Matthew A. Hibbs,et al.  Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. , 2011, The Journal of clinical investigation.

[130]  P. Penzes,et al.  Dendritic spine pathology in neuropsychiatric disorders , 2011, Nature Neuroscience.

[131]  D. Martín-Oliva,et al.  Microglia and neuronal cell death. , 2011, Neuron glia biology.

[132]  W. Wong,et al.  Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission , 2011, PloS one.

[133]  Douglas G. Peters,et al.  Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease , 2011, Journal of Neuroinflammation.

[134]  K. Lunetta,et al.  Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. , 2010, Archives of neurology.

[135]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[136]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[137]  G. Enikolopov,et al.  Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. , 2010, Cell stem cell.

[138]  E. Courchesne,et al.  Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism , 2010, Biological Psychiatry.

[139]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[140]  Izumi Maezawa,et al.  Rett Syndrome Microglia Damage Dendrites and Synapses by the Elevated Release of Glutamate , 2010, The Journal of Neuroscience.

[141]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[142]  Christoph Lange,et al.  Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. , 2008, American journal of human genetics.

[143]  A. Triller,et al.  Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor , 2008, The Journal of Neuroscience.

[144]  H. Tozaki-Saitoh,et al.  P2Y12 Receptors in Spinal Microglia Are Required for Neuropathic Pain after Peripheral Nerve Injury , 2008, The Journal of Neuroscience.

[145]  F. Gage,et al.  Mechanisms and Functional Implications of Adult Neurogenesis , 2008, Cell.

[146]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[147]  M. van Lookeren Campagne,et al.  Macrophage complement receptors and pathogen clearance , 2007, Cellular microbiology.

[148]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[149]  C. Gravel,et al.  BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain , 2005, Nature.

[150]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[151]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[152]  A. Zimmerman,et al.  Immunity, neuroglia and neuroinflammation in autism , 2005, International review of psychiatry.

[153]  A. Zimmerman,et al.  Neuroglial activation and neuroinflammation in the brain of patients with autism , 2005, Annals of neurology.

[154]  Jun Zhou,et al.  Absence of C1q Leads to Less Neuropathology in Transgenic Mouse Models of Alzheimer's Disease , 2004, The Journal of Neuroscience.

[155]  F. Sedel,et al.  Macrophage-Derived Tumor Necrosis Factor α, an Early Developmental Signal for Motoneuron Death , 2004, The Journal of Neuroscience.

[156]  N. Rooijen,et al.  Microglia Promote the Death of Developing Purkinje Cells , 2004, Neuron.

[157]  M. Bianchin,et al.  Nasu–Hakola Disease (Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy—PLOSL): A Dementia Associated with Bone Cystic Lesions. From Clinical to Genetic and Molecular Aspects , 2004, Cellular and Molecular Neurobiology.

[158]  F. Sedel,et al.  Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  S. Koizumi,et al.  P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury , 2003, Nature.

[160]  M. Colonna TREMs in the immune system and beyond , 2003, Nature Reviews Immunology.

[161]  S. Ferguson,et al.  Identification of a Novel Nuclear Localization Signal Common to 69- and 82-kDa Human Choline Acetyltransferase* , 2003, Journal of Biological Chemistry.

[162]  L. Peltonen,et al.  Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. , 2002, American journal of human genetics.

[163]  O. Salonen,et al.  CNS manifestations of Nasu–Hakola disease , 2001, Neurology.

[164]  Leena Peltonen,et al.  Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts , 2000, Nature Genetics.

[165]  L. Garcia-Segura,et al.  Sex Steroids and the Brain: Lessons from Animal Studies , 2000, Journal of pediatric endocrinology & metabolism : JPEM.

[166]  Y. Barde,et al.  Microglia-Derived Nerve Growth Factor Causes Cell Death in the Developing Retina , 1998, Neuron.

[167]  S. DeKosky,et al.  Structural correlates of cognition in dementia: quantification and assessment of synapse change. , 1996, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[168]  V. Perry,et al.  Turnover of resident microglia in the normal adult mouse brain , 1992, Neuroscience.

[169]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[170]  Sex determination and the generation of sexually dimorphic nervous systems , 1991, Neuron.

[171]  I. Feinberg,et al.  Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? , 1982, Journal of psychiatric research.