Nonlinear discontinuous Petrov–Galerkin methods

The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.

[1]  Benjamin Müller,et al.  A First-Order System Least Squares Method for Hyperelasticity , 2014, SIAM J. Sci. Comput..

[2]  Robert D. Moser,et al.  A DPG method for steady viscous compressible flow , 2014 .

[3]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[4]  Norbert Heuer,et al.  On the DPG method for Signorini problems , 2016 .

[5]  Carsten Carstensen,et al.  Convergence of natural adaptive least squares finite element methods , 2017, Numerische Mathematik.

[6]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[7]  Carsten Carstensen,et al.  Convergence and Optimality of Adaptive Least Squares Finite Element Methods , 2015, SIAM J. Numer. Anal..

[8]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[9]  Carsten Carstensen,et al.  A low-order discontinuous Petrov–Galerkin method for the Stokes equations , 2018, Numerische Mathematik.

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[12]  Ignacio Muga,et al.  Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods , 2015, SIAM J. Numer. Anal..

[13]  Carsten Carstensen,et al.  Axioms of adaptivity for separate marking , 2016, 1606.02165.

[14]  Carsten Carstensen,et al.  Low-Order Discontinuous Petrov-Galerkin Finite Element Methods for Linear Elasticity , 2016, SIAM J. Numer. Anal..

[15]  Jay Gopalakrishnan,et al.  Convergence rates of the DPG method with reduced test space degree , 2014, Comput. Math. Appl..

[16]  E. Zeidler Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .

[17]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[18]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..

[19]  Carsten Carstensen,et al.  Breaking spaces and forms for the DPG method and applications including Maxwell equations , 2015, Comput. Math. Appl..

[20]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[21]  Carsten Carstensen,et al.  Adaptive coupling of boundary elements and finite elements , 1995 .

[22]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[23]  Carsten Carstensen,et al.  Low-order dPG-FEM for an elliptic PDE , 2014, Comput. Math. Appl..

[24]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[25]  Carsten Carstensen,et al.  Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..

[26]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[27]  Ferdinando Auricchio,et al.  Mixed Finite Element Methods , 2004 .

[28]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[29]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[30]  Carsten Carstensen,et al.  Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-Interpolation , 2017, Comput. Methods Appl. Math..