On the secure domination numbers of maximal outerplanar graphs

A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex uS, there is a vertex vS such that uv is an edge and (S{v}){u} is also a dominating set of G. We show that if G is a maximal outerplane graph of n vertices, then G has a secure dominating set of size at most 3n7. Moreover, if a maximal outerplane graph G has no internal triangles, it has a secure dominating set of size at most n3. Finally, we show that any secure dominating set of a maximal outerplane graph without internal triangles has more than n4 vertices.

[1]  Zehui Shao,et al.  On dominating sets of maximal outerplanar and planar graphs , 2016, Discret. Appl. Math..

[2]  Mustapha Chellali,et al.  On Secure Domination in Graphs , 2015, Inf. Process. Lett..

[3]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[4]  Shin-ichi Tokunaga Dominating sets of maximal outerplanar graphs , 2013, Discret. Appl. Math..

[5]  Alewyn P. Burger,et al.  A linear algorithm for secure domination in trees , 2014, Discret. Appl. Math..

[6]  Johannes H. Hattingh,et al.  Total domination in maximal outerplanar graphs II , 2016, Discret. Math..

[8]  Christina M. Mynhardt,et al.  Secure domination critical graphs , 2009, Discret. Math..

[9]  Sergio R. Canoy,et al.  Secure domination in the joins of graphs , 2014 .

[10]  Jh van Vuuren,et al.  On minimum secure dominating sets of graphs , 2016 .

[11]  Johannes H. Hattingh,et al.  Total domination in maximal outerplanar graphs , 2017, Discret. Appl. Math..

[12]  C. N. Campos,et al.  On dominating sets of maximal outerplanar graphs , 2013, Discret. Appl. Math..

[13]  S. Arumugam,et al.  Perfect secure domination in graphs , 2017 .

[14]  Michael A. Henning,et al.  Vertex Covers and Secure Domination in Graphs , 2008 .

[15]  P. Roushini Leely Pushpam,et al.  Secure Restrained Domination in Graphs , 2015, Math. Comput. Sci..

[16]  Burger Ap,et al.  Two algorithms for secure graph domination , 2013 .

[17]  William Klostermeyer,et al.  Secure domination and secure total domination in graphs , 2008, Discuss. Math. Graph Theory.