Cr-Inclination Theorems for Singularly Perturbed Equations
暂无分享,去创建一个
[1] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[2] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[3] P. Brunovský. S-Shaped Bifurcation of a Singularly Perturbed Boundary Value Problem , 1998 .
[4] Christopher K. R. T. Jones,et al. Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .
[5] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[6] B. Sandstede,et al. Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .
[7] Higher order derivatives in topological linear spaces , 1978 .
[8] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[9] J. Palis,et al. Geometric theory of dynamical systems , 1982 .
[10] B. Deng,et al. Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .
[11] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[12] Peter Szmolyan,et al. Transversal heteroclinic and homoclinic orbits in singular perturbation problems , 1991 .