Visible rodent brain-wide networks at single-neuron resolution

There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development.

[1]  Peter T C So,et al.  High-resolution whole organ imaging using two-photon tissue cytometry. , 2007, Journal of biomedical optics.

[2]  D. V. van Essen,et al.  Challenges and Opportunities in Mining Neuroscience Data , 2011, Science.

[3]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[4]  Francesco Saverio Pavone,et al.  The connectomics challenge. , 2013, Functional neurology.

[5]  Qingming Luo,et al.  3D BrainCV: Simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution , 2014, NeuroImage.

[6]  Javier DeFelipe,et al.  3D segmentations of neuronal nuclei from confocal microscope image stacks , 2013, Front. Neuroanat..

[7]  Shaoqun Zeng,et al.  Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging , 2014, Nature Communications.

[8]  Timothy H. Murphy,et al.  Stroke and the Connectome: How Connectivity Guides Therapeutic Intervention , 2014, Neuron.

[9]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[10]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[11]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[12]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[13]  E. Nestler,et al.  The brain reward circuitry in mood disorders , 2013, Nature Reviews Neuroscience.

[14]  P. Osten,et al.  Mapping brain circuitry with a light microscope , 2013, Nature Methods.

[15]  Christof Koch,et al.  Neuroscience: Observatories of the mind , 2012, Nature.

[16]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[17]  Yoonsuck Choe,et al.  Construction of anatomically correct models of mouse brain networks , 2004, Neurocomputing.

[18]  R. Mark Henkelman,et al.  High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice , 2008, NeuroImage.

[19]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[20]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[21]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[22]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[23]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[24]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[25]  H. Siedentopf,et al.  Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser , 1902 .

[26]  John G. Sled,et al.  Three-dimensional cerebral vasculature of the CBA mouse brain: A magnetic resonance imaging and micro computed tomography study , 2007, NeuroImage.

[27]  Hang Zhou,et al.  NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model , 2013, Scientific Reports.

[28]  Paolo Frasconi,et al.  Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images , 2014, Bioinform..

[29]  J. Price :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .

[30]  R. Robey,et al.  pH-dependent fluorescence of a heterologously expressed Aequorea green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation. , 1998, Biochemistry.

[31]  Shaoqun Zeng,et al.  Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution , 2013, NeuroImage.

[32]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[33]  G. Iannello,et al.  Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. , 2012, Optics express.

[34]  Kwanghun Chung,et al.  Light microscopy mapping of connections in the intact brain , 2013, Trends in Cognitive Sciences.

[35]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[36]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[37]  E. Callaway,et al.  Previously Published Works Uc Irvine Title: Cell-type-specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Cell-type Specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Nih Public Access Author Manuscript , 2022 .

[38]  J. Konsman The mouse brain in stereotaxic coordinates Second Edition (Deluxe) By Paxinos G. and Franklin, K.B.J., Academic Press, New York, 2001, ISBN 0-12-547637-X , 2003, Psychoneuroendocrinology.

[39]  W. Guido,et al.  ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue , 2013, Development.

[40]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[41]  C. Sotelo,et al.  Viewing the brain through the master hand of Ramon y Cajal , 2003, Nature Reviews Neuroscience.

[42]  Ali Ertürk,et al.  Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO , 2014, Journal of visualized experiments : JoVE.

[43]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[44]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[45]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[46]  Wenyu Fu,et al.  Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain , 2010, The Journal of comparative neurology.

[47]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[48]  Saad Jbabdi,et al.  Long-range connectomics , 2013, Annals of the New York Academy of Sciences.

[49]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[50]  Qingming Luo,et al.  Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain , 2011, Journal of Neuroscience Methods.

[51]  Henry Markram,et al.  Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex , 2013, Front. Neuroanat..

[52]  D Mayerich,et al.  Knife‐edge scanning microscopy for imaging and reconstruction of three‐dimensional anatomical structures of the mouse brain , 2008, Journal of microscopy.

[53]  A. Levey,et al.  Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase , 1983, The Journal of comparative neurology.

[54]  Hiroshi Ishikawa,et al.  A novel method for three‐dimensional observation of the vascular networks in the whole mouse brain , 2008, Microscopy research and technique.

[55]  D. Kleinfeld,et al.  The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow , 2013, Nature Neuroscience.

[56]  Larry W. Swanson,et al.  Comparing histological data from different brains: Sources of error and strategies for minimizing them , 2009, Brain Research Reviews.

[57]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[58]  Ruchi Parekh,et al.  Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience , 2013, Neuron.

[59]  Alain Chédotal,et al.  Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow , 2015, Glia.

[60]  R. Douglas,et al.  An Axonal Perspective on Cortical Circuits , 2010 .

[61]  Karel Svoboda,et al.  The Past, Present, and Future of Single Neuron Reconstruction , 2011, Neuroinformatics.

[62]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[63]  Takeshi Imai,et al.  SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction , 2013, Nature Neuroscience.

[64]  Frank Bradke,et al.  Three-dimensional imaging of solvent-cleared organs using 3DISCO , 2012, Nature Protocols.

[65]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[66]  Håkan Johansson,et al.  Modern Techniques in Neuroscience Research , 1999, Springer Berlin Heidelberg.

[67]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[68]  Rajan P Kulkarni,et al.  Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing , 2014, Cell.

[69]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[70]  Partha P. Mitra,et al.  The Circuit Architecture of Whole Brains at the Mesoscopic Scale , 2014, Neuron.

[71]  Z Josh Huang,et al.  Toward a Genetic Dissection of Cortical Circuits in the Mouse , 2014, Neuron.

[72]  D. Kleinfeld,et al.  Correlations of Neuronal and Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and Vessels , 2009, The Journal of Neuroscience.

[73]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[74]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[75]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[76]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[77]  L. Garey Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. By V. BRAITENBERG and A. SCHÜZ. (Pp. xiii+249; 90 figures; ISBN 3 540 63816 4). Berlin: Springer. 1998. , 1999 .

[78]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[79]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[80]  Hang Zhou,et al.  Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model , 2014, Scientific Reports.

[81]  Werner Spalteholz,et al.  Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen : nebst Anhang : Über Knochenfärbung , 1914 .

[82]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[83]  Hans-Ulrich Dodt,et al.  Image contrast enhancement in confocal ultramicroscopy. , 2010, Optics letters.

[84]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[85]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[86]  Shaoqun Zeng,et al.  Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. , 2013, Optics express.

[87]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[88]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[89]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[90]  Frank Bradke,et al.  Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury , 2011, Nature Medicine.