Adjoint Fokker-Planck equation and runaway electron dynamics

The adjoint Fokker-Planck equation method is applied to study the runaway probability function and the expected slowing-down time for highly relativistic runaway electrons, including the loss of energy due to synchrotron radiation. In direct correspondence to Monte Carlo simulation methods, the runaway probability function has a smooth transition across the runaway separatrix, which can be attributed to effect of the pitch angle scattering term in the kinetic equation. However, for the same numerical accuracy, the adjoint method is more efficient than the Monte Carlo method. The expected slowing-down time gives a novel method to estimate the runaway current decay time in experiments. A new result from this work is that the decay rate of high energy electrons is very slow when E is close to the critical electric field. This effect contributes further to a hysteresis previously found in the runaway electron population.

[1]  J. R. Martin-Solis,et al.  Effect of magnetic and electrostatic fluctuations on the runaway electron dynamics in tokamak plasmas , 1999 .

[2]  J. W. Connor,et al.  Relativistic limitations on runaway electrons , 1975 .

[3]  J. R. Martin-Solis,et al.  Determination of the parametric region in which runaway electron energy losses are dominated by bremsstrahlung radiation in tokamaks , 2007 .

[4]  Paul B. Parks,et al.  Avalanche runaway growth rate from a momentum-space orbit analysis , 1999 .

[5]  M. Landreman,et al.  Synchrotron radiation from runaway electron distributions in tokamaks , 2013, 1308.2099.

[6]  Jose Ramon Martin-Solis,et al.  Momentum–space structure of relativistic runaway electrons , 1998 .

[7]  J. R. Martin-Solis,et al.  On the effect of synchrotron radiation and magnetic fluctuations on the avalanche runaway growth rate , 2000 .

[8]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .

[9]  Nathaniel J. Fisch,et al.  Transport in driven plasmas , 1986 .

[10]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[11]  T. Fülöp,et al.  Destabilization of magnetosonic-whistler waves by a relativistic runaway beam , 2006 .

[12]  P. Aleynikov,et al.  Theory of two threshold fields for relativistic runaway electrons. , 2015, Physical review letters.

[13]  G. I. Bell,et al.  On the Stochastic Theory of Neutron Transport , 1965 .

[14]  F. Andersson,et al.  Damping of relativistic electron beams by synchrotron radiation , 2001 .

[15]  Charles F. F. Karney,et al.  Current in wave-driven plasmas , 1986 .

[16]  J. Wesley,et al.  Growth and decay of runaway electrons above the critical electric field under quiescent conditions , 2014 .

[17]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[18]  J. Decker,et al.  Radiation reaction induced non-monotonic features in runaway electron distributions , 2015, Journal of Plasma Physics.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  J. R. Martin-Solis,et al.  Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak. , 2010, Physical review letters.

[21]  Tünde Fülöp,et al.  Numerical calculation of the runaway electron distribution function and associated synchrotron emission , 2013, Comput. Phys. Commun..

[22]  A. Siegert On the First Passage Time Probability Problem , 1951 .

[23]  Allen H. Boozer,et al.  Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation , 2015 .

[24]  J. Decker,et al.  Effective critical electric field for runaway-electron generation. , 2014, Physical review letters.

[25]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .