A Machine-learning Approach to Integral Field Unit Spectroscopy Observations. I. H ii Region Kinematics
暂无分享,去创建一个
[1] L. Horowitz,et al. The effects of spline interpolation on power spectral density , 1974 .
[2] B. Tinsley,et al. Composition gradients across spiral galaxies. II - The stellar mass limit , 1976 .
[3] H. French. Galaxies with the spectra of giant H II regions , 1980 .
[4] J. Bregman,et al. The galactic fountain of high-velocity clouds. , 1980 .
[5] L. Ramsey,et al. NGC 7714 - The prototype star-burst galactic nucleus , 1981 .
[6] J. Baldwin,et al. ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .
[7] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[8] A. Sandage,et al. Rotational velocities and central velocity dispersions for a sample of S0 galaxies , 1983 .
[9] R. Dennis Cook,et al. Cross-Validation of Regression Models , 1984 .
[10] R. Arsenault,et al. Integrated H-alpha profiles of giant extragalactic H II regions , 1986 .
[11] C. Odell. Turbulent motion in galactic H II regions , 1986 .
[12] D. Garnett,et al. Composition gradient across M81 , 1987 .
[13] Donald E. Osterbrock,et al. Spectral Classification of Emission-Line Galaxies , 1987 .
[14] D. Osterbrock. Active galactic nuclei , 1988 .
[15] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .
[16] G. A. Shields. Extragalactic H II Regions , 1990 .
[17] O. Lahav,et al. Morphological Classification of galaxies by Artificial Neural Networks , 1992 .
[18] R. Kennicutt,et al. Abundances of H II regions in early-type spiral galaxies , 1993 .
[19] E. Bertin. Classification of astronomical images with a neural network , 1994 .
[20] D. Sokoloff,et al. Galactic Magnetism: Recent developments and perspectives , 1996 .
[21] I. A. Kieseppä. Akaike Information Criterion, Curve-fitting, and the Philosophical Problem of Simplicity , 1997, The British Journal for the Philosophy of Science.
[22] Igor V. Tetko,et al. Efficient Partition of Learning Data Sets for Neural Network Training , 1997, Neural Networks.
[23] Michael Schulz,et al. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series , 1997 .
[24] The ROSAT Brightest Cluster Sample — III. Optical spectra of the central cluster galaxies , 1999, astro-ph/9903057.
[25] Ieee Xplore. Computing in science & engineering , 1999 .
[26] G. García-Segura,et al. The Evolution of HII Regions , 2000 .
[27] Yoshua Bengio,et al. No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..
[28] The internal dynamical equilibrium of H II regions: A statistical study , 2004, astro-ph/0410484.
[29] Annette M. Molinaro,et al. Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..
[30] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[31] J. Beckman,et al. Expansive components in H II regions , 2004, astro-ph/0410415.
[32] Usa,et al. The Electron Temperature Gradient in the Galactic Disk , 2006, astro-ph/0609006.
[33] L. Kewley,et al. The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.
[34] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[35] G. García-Segura,et al. Hα line profiles for a sample of supergiant HII regions. III. Model line profiles , 2007 .
[36] A. Liddle,et al. Information criteria for astrophysical model selection , 2007, astro-ph/0701113.
[37] Thijs van der Hulst,et al. Cold gas accretion in galaxies , 2008, 0803.0109.
[38] P. Amram,et al. GHASP: an Hα kinematic survey of 203 spiral and irregular galaxies – VII. Revisiting the analysis of Hα data cubes for 97 galaxies , 2008, 0808.0132.
[39] Fred L. Drake,et al. Python 3 Reference Manual , 2009 .
[40] A. Zavagno,et al. Near-IR integral field spectroscopy of ionizing stars and young stellar objects on the borders of H II regions , 2009, 0911.2637.
[41] M. Loupias,et al. The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.
[42] Gavin C. Cawley,et al. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..
[43] Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H II regions , 2012, 1208.1117.
[44] D. Clemens,et al. H ii REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD , 2012, 1210.4079.
[45] D. Ferrusca,et al. MEGARA: the future optical IFU and multi-object spectrograph for the 10.4m GTC telescope , 2012, Other Conferences.
[46] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[47] C. Giammanco,et al. THE FILLING FACTOR–RADIUS RELATION FOR 58 H ii REGIONS ACROSS THE DISK OF NGC 6946 , 2013, 1302.1009.
[48] L. Drissen,et al. Imaging FTS: A Different Approach to Integral Field Spectroscopy , 2014 .
[49] Hai Fu,et al. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.
[50] Danica J. Sutherland,et al. DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING , 2015, 1509.05409.
[51] C. Morisset,et al. Excitation properties of galaxies with the highest [OIII]/[OII] ratios: No evidence for massive escape of ionizing photons , 2015, 1503.00320.
[52] Velocity Dispersion of Ionized Gas and Multiple Supernova Explosions , 2015 .
[53] Graziano Ucci,et al. Inferring physical properties of galaxies from their emission line spectra , 2016, 1611.00768.
[54] C. Kramer,et al. A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES , 2016, 1606.07077.
[55] S. Prunet,et al. Optimal fitting of Gaussian-apodized or under-resolved emission lines in Fourier transform spectra providing new insights on the velocity structure of NGC 6720 , 2016, 1608.05854.
[56] Luth,et al. bond: Bayesian Oxygen and Nitrogen abundance Determinations in giant H ii regions using strong and semistrong lines , 2016, 1605.01057.
[57] Simon Prunet,et al. Commissioning SITELLE: an imaging Fourier transform spectrometer for the Canada France Hawaii Telescope , 2016, Astronomical Telescopes + Instrumentation.
[58] Sebastien Fabbro,et al. An application of deep learning in the analysis of stellar spectra , 2017, 1709.09182.
[59] J. Gallagher,et al. Stellar population of the superbubble N 206 in the LMC , 2018, Astronomy & Astrophysics.
[60] Graziano Ucci,et al. GAME: GAlaxy Machine learning for Emission lines , 2018, 1803.10236.
[61] Adrian M. Price-Whelan,et al. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.
[62] L. Drissen,et al. NGC628 with SITELLE: I. Imaging spectroscopy of 4285 H ii region candidates , 2017, 1704.05121.
[63] A. Krabbe,et al. Effective temperature of ionizing stars in extragalactic H iiregions – II. Nebular parameter relationships based on CALIFA data , 2018, Monthly Notices of the Royal Astronomical Society.
[64] Emmanuel Bertin,et al. Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.
[65] R. García-Benito,et al. Revisiting the hardening of the stellar ionizing radiation in galaxy discs , 2018, Monthly Notices of the Royal Astronomical Society.
[66] A. Edge,et al. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. , 2018, 1802.00031.
[67] G. Cresci,et al. The interstellar medium of dwarf galaxies: new insights from Machine Learning analysis of emission-line spectra , 2018, Monthly Notices of the Royal Astronomical Society.
[68] F. Marinacci,et al. A Deep Learning Approach to Galaxy Cluster X-Ray Masses , 2018, The Astrophysical Journal.
[69] E. Grebel,et al. The Young Massive Star Cluster Westerlund 2 Observed with MUSE. II. MUSEpack—A Python Package to Analyze the Kinematics of Young Star Clusters , 2019, The Astronomical Journal.
[70] S. Thibault,et al. SITELLE: an Imaging Fourier Transform Spectrometer for the Canada–France–Hawaii Telescope , 2018, Monthly Notices of the Royal Astronomical Society.
[71] Y. Ichinohe,et al. X-ray study of spatial structures in Tycho’s supernova remnant using unsupervised deep learning , 2019, Monthly Notices of the Royal Astronomical Society.
[72] A. Inoue,et al. Disentangling the physical parameters of gaseous nebulae and galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[73] C. Kehrig,et al. Searching for intergalactic star forming regions in Stephan’s Quintet with SITELLE , 2019, Astronomy & Astrophysics.
[74] M. Sarzi,et al. The GIST pipeline: A multi-purpose tool for the analysis and visualisation of (integral-field) spectroscopic data , 2019, Proceedings of the International Astronomical Union.
[75] SIGNALS: I. Survey description , 2019, Monthly Notices of the Royal Astronomical Society.
[76] CLOVER: Convnet Line-fitting Of Velocities in Emission-line Regions , 2019, The Astrophysical Journal.
[77] J. Gallagher,et al. Testing massive star evolution, star-formation history, and feedback at low metallicity , 2019, Astronomy & Astrophysics.
[78] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.