A Machine-learning Approach to Integral Field Unit Spectroscopy Observations. I. H ii Region Kinematics

SITELLE is a novel integral field unit spectroscopy instrument that has an impressive spatial (11 by 11 arcmin), spectral coverage, and spectral resolution (R=1-20000). SIGNALS is anticipated to obtain deep observations (down to 3.6x10-17ergs s-1cm-2) of 40 galaxies, each needing complex and substantial time to extract spectral information. We present a method that uses Convolution Neural Networks (CNN) for estimating emission line parameters in optical spectra obtained with SITELLE as part of the SIGNALS large program. Our algorithm is trained and tested on synthetic data representing typical emission spectra for HII regions based on Mexican Million Models database(3MdB) BOND simulations. The network's activation map demonstrates its ability to extract the dynamical (broadening and velocity) parameters from a set of 5 emission lines (e.g. H{\alpha}, N[II] doublet, and S[II] doublet) in the SN3 (651-685 nm) filter of SITELLE. Once trained, the algorithm was tested on real SITELLE observations in the SIGNALS program of one of the South West fields of M33. The CNN recovers the dynamical parameters with an accuracy better than 5 km s-1 in regions with a signal-to-noise ratio greater than 15 over the H{\alpha}line. More importantly, our CNN method reduces calculation time by over an order of magnitude on the spectral cube with native spatial resolution when compared with standard fitting procedures. These results clearly illustrate the power of machine learning algorithms for the use in future IFU-based missions. Subsequent work will explore the applicability of the methodology to other spectral parameters such as the flux of key emission lines.

[1]  L. Horowitz,et al.  The effects of spline interpolation on power spectral density , 1974 .

[2]  B. Tinsley,et al.  Composition gradients across spiral galaxies. II - The stellar mass limit , 1976 .

[3]  H. French Galaxies with the spectra of giant H II regions , 1980 .

[4]  J. Bregman,et al.  The galactic fountain of high-velocity clouds. , 1980 .

[5]  L. Ramsey,et al.  NGC 7714 - The prototype star-burst galactic nucleus , 1981 .

[6]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[7]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[8]  A. Sandage,et al.  Rotational velocities and central velocity dispersions for a sample of S0 galaxies , 1983 .

[9]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[10]  R. Arsenault,et al.  Integrated H-alpha profiles of giant extragalactic H II regions , 1986 .

[11]  C. Odell Turbulent motion in galactic H II regions , 1986 .

[12]  D. Garnett,et al.  Composition gradient across M81 , 1987 .

[13]  Donald E. Osterbrock,et al.  Spectral Classification of Emission-Line Galaxies , 1987 .

[14]  D. Osterbrock Active galactic nuclei , 1988 .

[15]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[16]  G. A. Shields Extragalactic H II Regions , 1990 .

[17]  O. Lahav,et al.  Morphological Classification of galaxies by Artificial Neural Networks , 1992 .

[18]  R. Kennicutt,et al.  Abundances of H II regions in early-type spiral galaxies , 1993 .

[19]  E. Bertin Classification of astronomical images with a neural network , 1994 .

[20]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[21]  I. A. Kieseppä Akaike Information Criterion, Curve-fitting, and the Philosophical Problem of Simplicity , 1997, The British Journal for the Philosophy of Science.

[22]  Igor V. Tetko,et al.  Efficient Partition of Learning Data Sets for Neural Network Training , 1997, Neural Networks.

[23]  Michael Schulz,et al.  Spectrum: spectral analysis of unevenly spaced paleoclimatic time series , 1997 .

[24]  The ROSAT Brightest Cluster Sample — III. Optical spectra of the central cluster galaxies , 1999, astro-ph/9903057.

[25]  Ieee Xplore Computing in science & engineering , 1999 .

[26]  G. García-Segura,et al.  The Evolution of HII Regions , 2000 .

[27]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[28]  The internal dynamical equilibrium of H II regions: A statistical study , 2004, astro-ph/0410484.

[29]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[30]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[31]  J. Beckman,et al.  Expansive components in H II regions , 2004, astro-ph/0410415.

[32]  Usa,et al.  The Electron Temperature Gradient in the Galactic Disk , 2006, astro-ph/0609006.

[33]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[34]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[35]  G. García-Segura,et al.  Hα line profiles for a sample of supergiant HII regions. III. Model line profiles , 2007 .

[36]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[37]  Thijs van der Hulst,et al.  Cold gas accretion in galaxies , 2008, 0803.0109.

[38]  P. Amram,et al.  GHASP: an Hα kinematic survey of 203 spiral and irregular galaxies – VII. Revisiting the analysis of Hα data cubes for 97 galaxies , 2008, 0808.0132.

[39]  Fred L. Drake,et al.  Python 3 Reference Manual , 2009 .

[40]  A. Zavagno,et al.  Near-IR integral field spectroscopy of ionizing stars and young stellar objects on the borders of H II regions , 2009, 0911.2637.

[41]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[42]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[43]  Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H II regions , 2012, 1208.1117.

[44]  D. Clemens,et al.  H ii REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD , 2012, 1210.4079.

[45]  D. Ferrusca,et al.  MEGARA: the future optical IFU and multi-object spectrograph for the 10.4m GTC telescope , 2012, Other Conferences.

[46]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[47]  C. Giammanco,et al.  THE FILLING FACTOR–RADIUS RELATION FOR 58 H ii REGIONS ACROSS THE DISK OF NGC 6946 , 2013, 1302.1009.

[48]  L. Drissen,et al.  Imaging FTS: A Different Approach to Integral Field Spectroscopy , 2014 .

[49]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[50]  Danica J. Sutherland,et al.  DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING , 2015, 1509.05409.

[51]  C. Morisset,et al.  Excitation properties of galaxies with the highest [OIII]/[OII] ratios: No evidence for massive escape of ionizing photons , 2015, 1503.00320.

[52]  Velocity Dispersion of Ionized Gas and Multiple Supernova Explosions , 2015 .

[53]  Graziano Ucci,et al.  Inferring physical properties of galaxies from their emission line spectra , 2016, 1611.00768.

[54]  C. Kramer,et al.  A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES , 2016, 1606.07077.

[55]  S. Prunet,et al.  Optimal fitting of Gaussian-apodized or under-resolved emission lines in Fourier transform spectra providing new insights on the velocity structure of NGC 6720 , 2016, 1608.05854.

[56]  Luth,et al.  bond: Bayesian Oxygen and Nitrogen abundance Determinations in giant H ii regions using strong and semistrong lines , 2016, 1605.01057.

[57]  Simon Prunet,et al.  Commissioning SITELLE: an imaging Fourier transform spectrometer for the Canada France Hawaii Telescope , 2016, Astronomical Telescopes + Instrumentation.

[58]  Sebastien Fabbro,et al.  An application of deep learning in the analysis of stellar spectra , 2017, 1709.09182.

[59]  J. Gallagher,et al.  Stellar population of the superbubble N 206 in the LMC , 2018, Astronomy & Astrophysics.

[60]  Graziano Ucci,et al.  GAME: GAlaxy Machine learning for Emission lines , 2018, 1803.10236.

[61]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[62]  L. Drissen,et al.  NGC628 with SITELLE: I. Imaging spectroscopy of 4285 H ii region candidates , 2017, 1704.05121.

[63]  A. Krabbe,et al.  Effective temperature of ionizing stars in extragalactic H iiregions – II. Nebular parameter relationships based on CALIFA data , 2018, Monthly Notices of the Royal Astronomical Society.

[64]  Emmanuel Bertin,et al.  Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.

[65]  R. García-Benito,et al.  Revisiting the hardening of the stellar ionizing radiation in galaxy discs , 2018, Monthly Notices of the Royal Astronomical Society.

[66]  A. Edge,et al.  Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. , 2018, 1802.00031.

[67]  G. Cresci,et al.  The interstellar medium of dwarf galaxies: new insights from Machine Learning analysis of emission-line spectra , 2018, Monthly Notices of the Royal Astronomical Society.

[68]  F. Marinacci,et al.  A Deep Learning Approach to Galaxy Cluster X-Ray Masses , 2018, The Astrophysical Journal.

[69]  E. Grebel,et al.  The Young Massive Star Cluster Westerlund 2 Observed with MUSE. II. MUSEpack—A Python Package to Analyze the Kinematics of Young Star Clusters , 2019, The Astronomical Journal.

[70]  S. Thibault,et al.  SITELLE: an Imaging Fourier Transform Spectrometer for the Canada–France–Hawaii Telescope , 2018, Monthly Notices of the Royal Astronomical Society.

[71]  Y. Ichinohe,et al.  X-ray study of spatial structures in Tycho’s supernova remnant using unsupervised deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[72]  A. Inoue,et al.  Disentangling the physical parameters of gaseous nebulae and galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[73]  C. Kehrig,et al.  Searching for intergalactic star forming regions in Stephan’s Quintet with SITELLE , 2019, Astronomy & Astrophysics.

[74]  M. Sarzi,et al.  The GIST pipeline: A multi-purpose tool for the analysis and visualisation of (integral-field) spectroscopic data , 2019, Proceedings of the International Astronomical Union.

[75]  SIGNALS: I. Survey description , 2019, Monthly Notices of the Royal Astronomical Society.

[76]  CLOVER: Convnet Line-fitting Of Velocities in Emission-line Regions , 2019, The Astrophysical Journal.

[77]  J. Gallagher,et al.  Testing massive star evolution, star-formation history, and feedback at low metallicity , 2019, Astronomy & Astrophysics.

[78]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.