Estimating distances from parallaxes. V: Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3.

Stellar distances constitute a foundational pillar of astrophysics. The publication of 1.47 billion stellar parallaxes from Gaia is a major contribution to this. Despite Gaia’s precision, the majority of these stars are so distant or faint that their fractional parallax uncertainties are large, thereby precluding a simple inversion of parallax to provide a distance. Here we take a probabilistic approach to estimating stellar distances that uses a prior constructed from a three-dimensional model of our Galaxy. This model includes interstellar extinction and Gaia’s variable magnitude limit. We infer two types of distance. The first, geometric, uses the parallax with a direction-dependent prior on distance. The second, photogeometric, additionally uses the color and apparent magnitude of a star, by exploiting the fact that stars of a given color have a restricted range of probable absolute magnitudes (plus extinction). Tests on simulated data and external validations show that the photogeometric estimates generally have higher accuracy and precision for stars with poor parallaxes. We provide a catalog of 1.47 billion geometric and 1.35 billion photogeometric distances together with asymmetric uncertainty measures. Our estimates are quantiles of a posterior probability distribution, so they transform invariably and can therefore also be used directly in the distance modulus ( ). The catalog may be downloaded or queried using ADQL at various sites (see http://www.mpia.de/~calj/gedr3_distances.html), where it can also be cross-matched with the Gaia catalog.

[1]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[2]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[3]  L. Sarro,et al.  Kalkayotl: A cluster distance inference code , 2020, Astronomy & Astrophysics.

[4]  Markus Demleitner,et al.  A Gaia Early DR3 Mock Stellar Catalog: Galactic Prior and Selection Function , 2020, Publications of the Astronomical Society of the Pacific.

[5]  F. Anders,et al.  From the bulge to the outer disc: StarHorse stellar parameters, distances, and extinctions for stars in APOGEE DR16 and other spectroscopic surveys , 2019, Astronomy & Astrophysics.

[6]  F. Anders,et al.  Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18 , 2019, Astronomy & Astrophysics.

[7]  Anthony G. A. Brown,et al.  Testing asteroseismology with Gaia DR2: hierarchical models of the Red Clump , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[9]  J. Bovy,et al.  Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  Jan Rybizki,et al.  gdr2_completeness: GaiaDR2 data retrieval and manipulation , 2018 .

[11]  P. Das,et al.  Isochrone ages for ∼3 million stars with the second Gaia data release , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  P. McMillan Simple Distance Estimates for Gaia DR2 Stars with Radial Velocities , 2018, Research Notes of the AAS.

[13]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[14]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[15]  L. Szabados,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[16]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[17]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[18]  H. Rix,et al.  A Gaia DR2 Mock Stellar Catalog , 2018, 1804.01427.

[19]  A. Goodman,et al.  Mapping Distances across the Perseus Molecular Cloud Using CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements , 2018, The Astrophysical Journal.

[20]  Maarten A. Breddels,et al.  Vaex: big data exploration in the era of Gaia , 2018, Astronomy & Astrophysics.

[21]  Ralph Schonrich,et al.  Assessing distances and consistency of kinematics in Gaia/TGAS , 2017, 1704.01333.

[22]  Heidelberg,et al.  ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR1 CATALOGUE , 2016, 1609.07369.

[23]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[24]  Coryn A. L. Bailer-Jones,et al.  ESTIMATING DISTANCES FROM PARALLAXES. II. PERFORMANCE OF BAYESIAN DISTANCE ESTIMATORS ON A GAIA-LIKE CATALOGUE , 2016, 1609.03424.

[25]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[26]  Lars Koesterke,et al.  THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK , 2014, 1405.1032.

[27]  E. Masana,et al.  An updated maximum likelihood approach to open cluster distance determination , 2014, 1403.8022.

[28]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[29]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[30]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[31]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[32]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[33]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .