Irregularities of point distributions relative to homothetic convex bodies I

The uniformity and irregularities of point distributions can be measured by various kinds of geometric objects. In this paper we prove the existence of point sets that have relatively small irregularities with respect to homothetic copies of a fixed convex body. The results give higher dimensional alternatives to a theorem of Beck.

[1]  K. F. Roth On irregularities of distribution , 1954 .

[2]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[3]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[4]  Wolfgang M. Schmidt Irregularities of distribution. IV , 1969 .

[5]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[6]  G. C. Shephard,et al.  Convex Polytopes and the Upper Bound Conjecture , 1971 .

[7]  W. Schmidt On irregularities of distribution vii , 1972 .

[8]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[9]  W. Schmidt Irregularities for distribution IX , 1975 .

[10]  W. Stute Convergence Rates for the Isotrope Discrepancy , 1977 .

[11]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[12]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[13]  Louis J. Billera,et al.  Counting Faces and Chains in Polytopes and Posets , 1983 .

[14]  J. Beck,et al.  Irregularities of distribution , 1987 .

[15]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[16]  On the discrepancy of convex plane sets , 1988 .

[17]  J. Beck Irregularities of Distribution, Ii , 1988 .

[18]  J. Beck A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution , 1989 .

[19]  N. Biggs GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .

[20]  József Beck,et al.  Irregularities of point distribution relative to convex polygons II , 1993 .

[21]  G. Károlyi Geometric discrepancy theorems in higher dimensions , 1995 .