Irregularities of point distributions relative to homothetic convex bodies I
暂无分享,去创建一个
[1] K. F. Roth. On irregularities of distribution , 1954 .
[2] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[3] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[4] Wolfgang M. Schmidt. Irregularities of distribution. IV , 1969 .
[5] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[6] G. C. Shephard,et al. Convex Polytopes and the Upper Bound Conjecture , 1971 .
[7] W. Schmidt. On irregularities of distribution vii , 1972 .
[8] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[9] W. Schmidt. Irregularities for distribution IX , 1975 .
[10] W. Stute. Convergence Rates for the Isotrope Discrepancy , 1977 .
[11] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[12] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[13] Louis J. Billera,et al. Counting Faces and Chains in Polytopes and Posets , 1983 .
[14] J. Beck,et al. Irregularities of distribution , 1987 .
[15] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[16] On the discrepancy of convex plane sets , 1988 .
[17] J. Beck. Irregularities of Distribution, Ii , 1988 .
[18] J. Beck. A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution , 1989 .
[19] N. Biggs. GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .
[20] József Beck,et al. Irregularities of point distribution relative to convex polygons II , 1993 .
[21] G. Károlyi. Geometric discrepancy theorems in higher dimensions , 1995 .