Deviation-based spam-filtering method via stochastic approach
暂无分享,去创建一个
In the presence of a huge number of possible purchase choices, ranks or ratings of items by others often play very important roles for a buyer to make a final purchase decision. Perfectly objective rating is an impossible task to achieve, and we often use an average rating built on how previous buyers estimated the quality of the product. The problem of using a simple average rating is that it can easily be polluted by careless users whose evaluation of products cannot be trusted, and by malicious spammers who try to bias the rating result on purpose. In this letter we suggest how trustworthiness of individual users can be systematically and quantitatively reflected to build a more reliable rating system. We compute the suitably defined reliability of each user based on the user's rating pattern for all products she evaluated. We call our proposed method as the deviation-based ranking , since the statistical significance of each user's rating pattern with respect to the average rating pattern is the key ingredient. We find that our deviation-based ranking method outperforms existing methods in filtering out careless random evaluators as well as malicious spammers.