Loop Vertex Expansion for Phi^2k Theory in Zero Dimension

In this paper we extend the method of loop vertex expansion to interactions with degree higher than 4. As an example we provide through this expansion an explicit proof that the free energy of Phi^2k scalar theory in zero dimension is Borel-Le Roy summable of order k-1. We detail the computations in the case of a Phi^6 interaction.

[1]  H. Grosse,et al.  Progress in solving a noncommutative quantum field theory in four dimensions , 2009, 0909.1389.

[2]  M. Smerlak,et al.  Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.

[3]  V. Rivasseau,et al.  Tree Quantum Field Theory , 2008, 0807.4122.

[4]  V. Rivasseau,et al.  Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.

[5]  Paolo Ribeca,et al.  From Useful Algorithms for Slowly Convergent Series to Physical Predictions Based on Divergent Perturbative Expansions , 2007, 0707.1596.

[6]  V. Rivasseau Constructive matrix theory , 2007, 0706.1224.

[7]  M. Disertori,et al.  Vanishing of beta function of non-commutative Φ 4 4 theory to all orders , 2006, hep-th/0612251.

[8]  V. Rivasseau,et al.  Renormalisation of Noncommutative ϕ4-Theory by Multi-Scale Analysis , 2005, Communications in Mathematical Physics.

[9]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[10]  V. Rivasseau,et al.  Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.

[11]  J. Magnen,et al.  Construction and Borel summability of infrared Φ44 by a phase space expansion , 1987 .

[12]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[13]  K. Gawȩdzki,et al.  Massless lattice φ44 theory: Rigorous control of a renormalizable asymptotically free model , 1985 .

[14]  Alan D. Sokal,et al.  An improvement of Watson’s theorem on Borel summability , 1980 .