Zero‐Bias Locally Adaptive Density Estimators

Strategies for improving fixed non‐negative kernel estimators have focused on reducing the bias, either by employing higher‐order kernels or by adjusting the bandwidth locally. Intuitively, bandwidths in the tails should be relatively larger in order to reduce wiggles since there is less data available in the tails. We show that in regions where the density function is convex, it is theoretically possible to find local bandwidths such that the pointwise bias is exactly zero. The corresponding pointwise mean squared error converges at the parametric rate of O(n−1) rather than the slower O(n−4/5). These so‐called zero‐bias bandwidths are constant and are usually orders of magnitude larger than the optimal locally adaptive bandwidths predicted by asymptotic mean squared error analysis. We describe data‐based algorithms for estimating zero‐bias bandwidths over intervals where the density is convex. We find that our particular density estimator attains the usual O(n−4/5) rate. However, we demonstrate that the algorithms can provide significant improvement in mean squared error, often clearly visually superior curves, and a new operating point in the usual bias‐variance tradeoff.

[1]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[2]  Luc Devroye,et al.  Variable Kernel Estimates: On the Impossibility of Tuning the Parameters , 1998 .

[3]  Martin L. Hazelton Bandwidth Selection for Local Density Estimators , 1996 .

[4]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[5]  Peter Hall,et al.  A local cross-validation algorithm , 1989 .

[6]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[7]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[8]  M. C. Jones,et al.  A Comparison of Higher-Order Bias Kernel Density Estimators , 1997 .

[9]  Jeffrey S. Simonoff Further Applications of Smoothing , 1996 .

[10]  James Stephen Marron,et al.  Lower bounds for bandwidth selection in density estimation , 1991 .

[11]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[12]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[13]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[14]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[15]  James Stephen Marron,et al.  Best Possible Constant for Bandwidth Selection , 1992 .

[16]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[17]  Peter Hall,et al.  On local smoothing of nonparametric curve estimators , 1996 .

[18]  M. C. Jones Variable kernel density estimates and variable kernel density estimates , 1990 .

[19]  R. Mahley,et al.  Turkish Heart Study: lipids, lipoproteins, and apolipoproteins. , 1995, Journal of lipid research.

[20]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[21]  K. B. Davis,et al.  Mean Square Error Properties of Density Estimates , 1975 .

[22]  S. Sain Adaptive kernel density estimation , 1994 .

[23]  J. Marron,et al.  Improved Variable Window Kernel Estimates of Probability Densities , 1995 .

[24]  Rob J Hyndman,et al.  Estimating and Visualizing Conditional Densities , 1996 .

[25]  Martin L. Hazelton,et al.  Bias annihilating bandwidths for kernel density estimation at a point , 1998 .

[26]  D. W. Scott,et al.  On Locally Adaptive Density Estimation , 1996 .

[27]  Martin L. Hazelton,et al.  Optimal rates for local bandwidth selection , 1996 .

[28]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[29]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[30]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[31]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[32]  Jan Mielniczuk,et al.  Local data-driven bandwidth choice for density estimation , 1989 .