Finite-time erasing of information stored in fermionic bits.

We address the issue of minimizing the heat generated when erasing the information stored in an array of quantum dots in finite time. We identify the fundamental limitations and trade-offs involved in this process and analyze how a feedback operation can help improve it.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[3]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[4]  R. J. Joenk,et al.  IBM journal of research and development: information for authors , 1978 .

[5]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[6]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  Shizume Heat generation required by information erasure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[10]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[11]  Udo Seifert,et al.  Efficiency at maximum power: An analytically solvable model for stochastic heat engines , 2007, 0710.4097.

[12]  U. Seifert,et al.  Optimal finite-time processes in stochastic thermodynamics. , 2007, Physical review letters.

[13]  Udo Seifert,et al.  Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. , 2008, The Journal of chemical physics.

[14]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[15]  D. Andrieux,et al.  Dynamical randomness, information, and Landauer's principle , 2008, 0801.2727.

[16]  Massimiliano Esposito,et al.  Finite-time thermodynamics for a single-level quantum dot , 2009, 0909.3618.

[17]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[18]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Massimiliano Esposito,et al.  Quantum-dot Carnot engine at maximum power. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[21]  Massimiliano Esposito,et al.  Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.

[22]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[24]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[25]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[26]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[27]  M. Esposito Stochastic thermodynamics under coarse graining. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Gernot Schaller,et al.  Stochastic thermodynamics for “Maxwell demon” feedbacks , 2012, 1204.5671.

[29]  Udo Seifert,et al.  Thermodynamics of genuine nonequilibrium states under feedback control. , 2011, Physical review letters.

[30]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[31]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .