Communicating Finite-State Machines and Two-Variable Logic

Communicating finite-state machines are a fundamental, well-studied model of finite-state processes that communicate via unbounded first-in first-out channels. We show that they are expressively equivalent to existential MSO logic with two first-order variables and the order relation.

[1]  Thomas Schwentick,et al.  Two-variable logic on data words , 2011, TOCL.

[2]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[3]  Nicole Schweikardt,et al.  Comparing the Succinctness of Monadic Query Languages over Finite Trees , 2003, CSL.

[4]  Thomas Schwentick,et al.  On Notions of Regularity for Data Languages , 2007, FCT.

[5]  Anca Muscholl,et al.  On Communicating Automata with Bounded Channels , 2007, Fundam. Informaticae.

[6]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[7]  Dietrich Kuske,et al.  Infinite Series-Parallel Posets: Logic and Languages , 2000, ICALP.

[8]  Wolfgang Thomas,et al.  Elements of an automata theory over partial orders , 1997, Partial Order Methods in Verification.

[9]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[10]  Lauri Hella,et al.  Weak models of distributed computing, with connections to modal logic , 2012, PODC '12.

[11]  Antti Kuusisto,et al.  Modal Logic and Distributed Message Passing Automata , 2013, CSL.

[12]  Fabian Reiter,et al.  Distributed Graph Automata , 2014, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[13]  Anca Muscholl,et al.  A Kleene theorem and model checking algorithms for existentially bounded communicating automata , 2006, Inf. Comput..

[14]  Neil Immerman,et al.  Expressiveness and succinctness of first-order logic on finite words , 2011 .

[15]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[16]  Martin Otto,et al.  On Logics with Two Variables , 1999, Theor. Comput. Sci..

[17]  W. Hanf MODEL-THEORETIC METHODS IN THE STUDY OF ELEMENTARY LOGIC , 2014 .

[18]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[19]  Benedikt Bollig,et al.  Propositional Dynamic Logic for Message-Passing Systems , 2010, Log. Methods Comput. Sci..

[20]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[21]  Nicolas Bedon Logic and Branching Automata , 2015, Log. Methods Comput. Sci..

[22]  Madhavan Mukund,et al.  A theory of regular MSC languages , 2005, Inf. Comput..

[23]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[24]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[25]  Fabian Reiter,et al.  Asynchronous Distributed Automata: A Characterization of the Modal Mu-Fragment , 2016, ICALP.