Potential energy function for a photo‐switchable lipid molecule

Photo‐switchable lipids are synthetic lipid molecules used in photo‐pharmacology to alter membrane lateral pressure and thus control opening and closing of mechanosensitive ion channels. The molecular picture of how photo‐switchable lipids interact with membranes or ion channels is poorly understood. To facilitate all‐atom simulations that could provide a molecular picture of membranes with photo‐switchable lipids, we derived force field parameters for atomistic computations of the azobenzene‐based fatty acid FAAzo‐4. We implemented a Phyton‐based algorithm to make the optimization of atomic partial charges more efficient. Overall, the parameters we derived give good description of the equilibrium structure, torsional properties, and non‐bonded interactions for the photo‐switchable lipid in its trans and cis intermediate states, and crystal lattice parameters for trans‐FAAzo‐4. These parameters can be extended to all‐atom descriptions of various photo‐switchable lipids that have an azobenzene moiety.

[1]  D. Trauner,et al.  Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[2]  D. Trauner,et al.  Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[3]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[4]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[5]  R. Ahlrichs,et al.  Ab initio calculation of the vibrational and electronic spectra of trans- and cis-azobenzene. , 2003, Journal of the American Chemical Society.

[6]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[7]  Defects in DNA: Lessons from Molecular Motor Design , 2012 .

[8]  Youguo Yan,et al.  Unusual, photo-induced self-assembly of azobenzene-containing amphiphiles. , 2014, Soft matter.

[9]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[10]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[11]  C. Romming,et al.  A Refinement of the Crystal Structure of cis-Azobenzene. , 1971 .

[12]  B. Hartke,et al.  Approximate photochemical dynamics of azobenzene with reactive force fields. , 2013, The Journal of chemical physics.

[13]  Carsten Schultz,et al.  Photoswitchable diacylglycerols enable optical control of protein kinase C. , 2016, Nature chemical biology.

[14]  Dominik Marx,et al.  Nonadiabatic hybrid quantum and molecular mechanic simulations of azobenzene photoswitching in bulk liquid environment. , 2010, The journal of physical chemistry. A.

[15]  P. Schwille,et al.  Optical Control of Lipid Rafts with Photoswitchable Ceramides. , 2016, Journal of the American Chemical Society.

[16]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[17]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[18]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[19]  Alex H de Vries,et al.  Lipid-mediated light activation of a mechanosensitive channel of large conductance. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[20]  S. Papson “Model” , 1981 .

[21]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[22]  D. Trauner,et al.  Photoswitchable fatty acids enable optical control of TRPV1 , 2015, Nature Communications.

[23]  Martin Biel,et al.  Photopharmacological control of bipolar cells restores visual function in blind mice , 2017, The Journal of clinical investigation.

[24]  A. Görling,et al.  Molecular mechanics modeling of azobenzene-based photoswitches , 2012, Journal of Molecular Modeling.

[25]  G. Rutter,et al.  Optical control of insulin release using a photoswitchable sulfonylurea , 2014, Nature Communications.

[26]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[27]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[28]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[29]  Keiichiro Ogawa,et al.  Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X‐ray Diffraction , 1997 .

[30]  Dong Wang,et al.  Molecular dynamics simulations of the supramolecular assembly between an azobenzene-containing surfactant and α-cyclodextrin: role of photoisomerization. , 2012, The journal of physical chemistry. B.

[31]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[32]  Arnold T. Hagler,et al.  An ab Initio CFF93 All-Atom Force Field for Polycarbonates , 1994 .

[33]  Claudio Zannoni,et al.  How does the trans-cis photoisomerization of azobenzene take place in organic solvents? , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Alexander D. MacKerell,et al.  Robustness in the fitting of molecular mechanics parameters , 2015, J. Comput. Chem..

[35]  M. Ratner,et al.  DNA-based optomechanical molecular motor. , 2011, Journal of the American Chemical Society.

[36]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[37]  B. Corry,et al.  Molecular dynamics simulations of structure and dynamics of organic molecular crystals. , 2010, Physical chemistry chemical physics : PCCP.

[38]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[39]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..