The Human Visual System

Publisher Summary Brain mapping techniques have made significant inroads into understanding the mechanisms of human vision. Both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have defined loci and networks in the brain, but structural imaging can still play an important part. Originally, gadolinium contrast injection was used to obtain a detectable fMRI signal, but now it is almost universal to rely on the so-called blood oxygen level dependent technique. When regional cerebral blood flow (rCBF) increases, the local concentration of deoxygenated hemoglobin decreases, and this small change is detected by the magnetic resonance scanner. Radiochemists are able to label various tracers with PET isotopes and thus allow a vast array of functional imaging approaches. These include measures of local metabolism, blood flow and blood volume, the determination of presynaptic transmitter concentration, postsynaptic receptor density, and the site of action of drugs. Almost all the work on the visual system has been done by measuring metabolism or rCBF. The techniques of event-related potential, magnetoencephalography, and transcranial magnetic stimulation allow information on the fine timing of cerebral events to be obtained. Each method has strengths that suit some experimental questions more than others, but they all should be thought of as complementing each other.

[1]  E Courchesne,et al.  In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. , 1992, Cerebral cortex.

[2]  Richard S. J. Frackowiak,et al.  The Mind's Eye—Precuneus Activation in Memory-Related Imagery , 1995, NeuroImage.

[3]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[4]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[5]  Umberto Castiello,et al.  A brain-damaged patient with an unusual perceptuomotor deficit , 1995, Nature.

[6]  S. Zeki The Motion Vision of the Blind , 1995, NeuroImage.

[7]  C. N. Guy,et al.  Motion specific responses from a blind hemifield. , 1996, Brain : a journal of neurology.

[8]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[9]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[11]  L Weiskrantz,et al.  The Ferrier Lecture, 1989 - Outlooks for blindsight: explicit methodologies for implicit processes , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[12]  C. C. Wood APPLICATION OF DIPOLE LOCALIZATION METHODS TO SOURCE IDENTIFICATION OF HUMAN EVOKED POTENTIALS * , 1980, Annals of the New York Academy of Sciences.

[13]  J. C. Meadows,et al.  Cerebral color blindness: An acquired defect in hue discrimination , 1979, Annals of neurology.

[14]  G. Riddoch DISSOCIATION OF VISUAL PERCEPTIONS DUE TO OCCIPITAL INJURIES, WITH ESPECIAL REFERENCE TO APPRECIATION OF MOVEMENT , 1917 .

[15]  M. Gazzaniga,et al.  Residual vision in a scotoma: implications for blindsight. , 1992, Science.

[16]  Benson Df,et al.  Posterior cortical atrophy. , 1988, Archives of neurology.

[17]  A Rémond,et al.  EEG field mapping. , 1978, Electroencephalography and clinical neurophysiology.

[18]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[19]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[20]  Stephen J. Anderson,et al.  Magnetoencephalographic evidence for non-geniculostriate visual input to human cortical area V5 , 1997, Neuropsychologia.

[21]  D Le Bihan,et al.  Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[23]  V. Virsu,et al.  Activation of Human V5 Complex and Rolandic Regions in Association with Moving Visual Stimuli , 1997, NeuroImage.

[24]  N C Andreasen,et al.  Neural substrates of facial recognition. , 1996, The Journal of neuropsychiatry and clinical neurosciences.

[25]  N. Dohi,et al.  Is unilateral spatial neglect a single phenomenon? , 1997, Journal of Neurology.

[26]  D. Ingvar,et al.  Brain function and blood flow. , 1978, Scientific American.

[27]  G. Holmes,et al.  Disturbances of Vision from Cerebral Lesions, with Special Reference to the Cortical Representation of the Macula , 1916, Proceedings of the Royal Society of Medicine.

[28]  V. Hömberg,et al.  Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5 , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Richard S. J. Frackowiak,et al.  Retinotopic Maps in Human Prestriate Visual Cortex: The Demarcation of Areas V2 and V3 , 1995, NeuroImage.

[30]  J C Honeyman,et al.  A technique to localize activation in the human brain with technetium-99m-HMPAO SPECT: a validation study using visual stimulation. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  B. Gulyás,et al.  Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography. , 1995, Cerebral cortex.

[32]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  J. Mazziotta,et al.  A Noninvasive Positron Computed Tomography Technique Using Oxygen-15-Labeled Water for the Evaluation of Neurobehavioral Task Batteries , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  J Romaya,et al.  The timing of visual evoked potential activity in human area V4 , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  W. Fries The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[37]  Mark Solms,et al.  Inverted Vision After Frontal Lobe Disease , 1988, Cortex.

[38]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  B. Rosen,et al.  Susceptibility contrast imaging of cerebral blood volume: Human experience , 1991, Magnetic resonance in medicine.

[40]  R. Srebro,et al.  Localization of visually evoked cortical activity using magnetic resonance imaging and computerized tomography , 1990, Vision Research.

[41]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[42]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[43]  T Elbert,et al.  The cortical representation of object motion in man is inter‐individually variable , 1996, Neuroreport.

[44]  Jonathan D. Cohen,et al.  Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners , 1993, Nature.

[45]  S. Lessell,et al.  Acquired cerebral dyschromatopsia. , 1977, Archives of ophthalmology.

[46]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[47]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[48]  P. Jouannet,et al.  ANOMALOUS PROTEIN COMPLEMENT OF SPERM NUCLEI IN SOME INFERTILE MEN , 1987, The Lancet.

[49]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[51]  W Richter,et al.  Limitations of temporal resolution in functional MRI , 1997, Magnetic resonance in medicine.

[52]  D. Goodin,et al.  Visual evoked potentials in the investigation of “blindsight” , 1988, Neurology.

[53]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[54]  John F. Fulton,et al.  Observations upon the Vascularity of the Human Occipital Lobe during Visual Activity , 1930, Edinburgh medical journal.

[55]  A. Damasio,et al.  Central achromatopsia , 1980, Neurology.

[56]  R Hari,et al.  Face-specific responses from the human inferior occipito-temporal cortex , 1997, Neuroscience.

[57]  J Z Wang,et al.  On cortical folds and neuromagnetic fields. , 1991, Electroencephalography and clinical neurophysiology.

[58]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[59]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[60]  H. Coslett Neglect in vision and visual imagery: a double dissociation. , 1997, Brain : a journal of neurology.

[61]  R. S. J. Frackowiak,et al.  Hemispheric specialization for global and local processing: the effect of stimulus category , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[63]  T J Spinks,et al.  Physical performance of a positron tomograph for brain imaging with retractable septa. , 1992, Physics in medicine and biology.

[64]  J. Haxby,et al.  Activation of cerebral blood flow during a visuoperceptual task in patients with Alzheimer-type dementia , 1993, Neurobiology of Aging.

[65]  M. Rizzo,et al.  Looking but not seeing , 1987, Neurology.

[66]  R. Marshall,et al.  Changes in Regional Cerebral Blood Flow Related to Line Bisection Discrimination and Visual Attention Using HMPAO-SPECT , 1997, NeuroImage.

[67]  R. Woods,et al.  Abnormal processing of visual motion in dyslexia revealed by functional brain imaging , 1996, Nature.

[68]  M. Gazzaniga,et al.  Transcranial magnetic stimulation: delays in visual suppression due to luminance changes. , 1996, Neuroreport.

[69]  J. Mazziotta,et al.  Tomographic mapping of human cerebral metabolism , 1984, Neurology.

[70]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[72]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[73]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[74]  Karl J. Friston,et al.  The colour centre in the cerebral cortex of man , 1989, Nature.

[75]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[76]  M. Moster,et al.  Physiologic functional imaging in "functional" visual loss. , 1996, Survey of ophthalmology.

[77]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  J. Horton,et al.  Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. , 1991, Brain : a journal of neurology.

[79]  A. Alavi,et al.  Positron emission tomographic studies of perceptual tasks , 1984, Annals of neurology.

[80]  M. Mintun,et al.  Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[81]  N. Lassen,et al.  The cerebral blood flow in man determined by the use of radioactive krypton. , 1955, Acta physiologica Scandinavica.

[82]  S. Zeki,et al.  The consequences of inactivating areas V1 and V5 on visual motion perception. , 1995, Brain : a journal of neurology.

[83]  M. Rizzo 'Bálint's syndrome' and associated visuospatial disorders. , 1993, Bailliere's clinical neurology.

[84]  J. R. Baker,et al.  Magnetic Resonance Imaging Mapping of Brain Function: Human Visual Cortex , 1992, Investigative radiology.

[85]  H. Masur,et al.  Suppression of visual perception by transcranial magnetic stimulation--experimental findings in healthy subjects and patients with optic neuritis. , 1993, Electroencephalography and clinical neurophysiology.

[86]  S. Hillyard Electrical and magnetic brain recordings: contributions to cognitive neuroscience , 1993, Current Opinion in Neurobiology.

[87]  Meredith C. Phelps,et al.  Metabolic mapping of the brain's response to visual stimulation: studies in humans , 1981 .

[88]  M. Corbetta,et al.  Top-down modulation of early sensory cortex. , 1997 .

[89]  S. Zeki,et al.  Brain Activity Related to the Perception of Illusory Contours , 1996, NeuroImage.

[90]  A. Vighetto,et al.  Homonymous horizontal sectoranopia: report of four cases. , 1991, The British journal of ophthalmology.

[91]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[92]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[93]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[94]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[95]  M. Raichle,et al.  Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. , 1984, Journal of neurophysiology.

[96]  S Dehaene,et al.  Selective deficit of visual size perception: two cases of hemimicropsia. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[97]  Tatsuji Inouye,et al.  Die Sehstörungen bei Schußverletzungen der kortikalen Sehsphäre : nach Beobachtungen an Verwundeten der letzten japanischen Kriege , 1909 .

[98]  Edward T. Bullmore,et al.  A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain , 1996, Current Biology.

[99]  J. Meerwaldt,et al.  Balint's syndrome in a man with border-zone infarcts caused by atrial fibrillation , 1984, Clinical Neurology and Neurosurgery.

[100]  S Vanni,et al.  Visual motion activates V5 in dyslexics , 1997, Neuroreport.

[101]  M. Brigell,et al.  Cortical blindness and residual vision , 1991, Neurology.

[102]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  G. Bonin,et al.  The isocortex of man , 1951 .

[104]  J. Hajnal,et al.  Artifacts due to stimulus correlated motion in functional imaging of the brain , 1994, Magnetic resonance in medicine.

[105]  L. Benevento,et al.  The organization of connections between the pulvinar and visual area MT in the macaque monkey , 1983, Brain Research.

[106]  D. Potter,et al.  The chemical differentiation of nerve cells. , 1978, Scientific American.

[107]  P. Maeder,et al.  Sectoranopia After Head Trauma , 1995, Neurology.

[108]  N. A. Lassen,et al.  QUANTITATIVE DETERMINATION OF REGIONAL CEREBRAL BLOOD-FLOW IN MAN , 1961 .

[109]  D. Hadley,et al.  Representation of the visual field in the occipital striate cortex. , 1994, The British journal of ophthalmology.

[110]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[111]  H. Rowley,et al.  Functional localization by magnetoencephalography. , 1995, Neuroimaging clinics of North America.

[112]  D. Greenfield,et al.  Bilateral lateral geniculitis associated with severe diarrhea. , 1996, American journal of ophthalmology.

[113]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[114]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[115]  T. Allison,et al.  Electrophysiological studies of color processing in human visual cortex. , 1993, Electroencephalography and clinical neurophysiology.

[116]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[117]  R. Hari,et al.  Visual awareness of objects correlates with activity of right occipital cortex , 1996, Neuroreport.

[118]  Alan C. Evans,et al.  Anatomical-Functional Correlation Using an Adjustable MRI-Based Region of Interest Atlas with Positron Emission Tomography , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[119]  N Mai,et al.  Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations. , 1991, Brain : a journal of neurology.

[120]  S Zeki,et al.  Going beyond the information given: the relation of illusory visual motion to brain activity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[121]  Peter Thier,et al.  False perception of motion in a patient who cannot compensate for eye movements , 1997, Nature.

[122]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[123]  B U Meyer,et al.  Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. , 1991, Electroencephalography and clinical neurophysiology. Supplement.

[124]  B R Rosen,et al.  Modulation of auditory and visual cortex by selective attention is modality-dependent. , 1996, Neuroreport.

[125]  D G Pelli,et al.  A binocular fiberscope for presenting visual stimuli during fMRI. , 1997, Spatial vision.

[126]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[127]  G. Celesia,et al.  Perimetry, visual evoked potentials and visual evoked spectrum array in homonymous hemianopsia. , 1983, Electroencephalography and clinical neurophysiology.

[128]  L. Frisén,et al.  Sectorial optic atrophy and homonymous, horizontal sectoranopia: a lateral choroidal artery syndrome? , 1978, Journal of neurology, neurosurgery, and psychiatry.

[129]  L. Kaufman,et al.  Modulation transfer functions of the human visual system revealed by magnetic field measurements , 1982, Vision Research.

[130]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[131]  H Suzuki,et al.  Human cortical area responding to stimuli in apparent motion , 1997, Neuroreport.

[132]  D. Braun,et al.  Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination , 1994, Vision Research.

[133]  A. Valavanis,et al.  The missing temporal crescent. , 1995, American journal of ophthalmology.

[134]  S. Atlas,et al.  SPECT in patients with cortical visual loss. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[135]  C. N. Guy,et al.  The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. , 1995, Brain : a journal of neurology.

[136]  D. Heeger,et al.  Brain activity in visual cortex predicts individual differences in reading performance. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  R. Ilmoniemi,et al.  Seeing faces activates three separate areas outside the occipital visual cortex in man , 1991, Neuroscience.

[138]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[139]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[140]  S. Zeki,et al.  Cerebral akinetopsia (visual motion blindness). A review. , 1991, Brain : a journal of neurology.

[141]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[142]  R Shapley,et al.  Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[143]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[144]  S Zeki,et al.  The brain activity related to residual motion vision in a patient with bilateral lesions of V5. , 1994, Brain : a journal of neurology.

[145]  M Wagner,et al.  Fast visual evoked potential input into human area V5 , 1997, Neuroreport.

[146]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[147]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  K M Heilman,et al.  Hemispatial visual inattention masquerading as hemianopia , 1989, Neurology.

[149]  J. Haxby,et al.  Functional Magnetic Resonance Imaging of Human Visual Cortex during Face Matching: A Comparison with Positron Emission Tomography , 1996, NeuroImage.

[150]  E Marg,et al.  Magnetostimulation of Vision: Direct Noninvasive Stimulation of the Retina and the Visual Brain , 1991, Optometry and vision science : official publication of the American Academy of Optometry.