Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2 Carbons

[1]  Riichiro Saito,et al.  Raman spectroscopy of graphene and carbon nanotubes , 2011 .

[2]  F. Stavale,et al.  Quantifying defects in graphene via Raman spectroscopy at different excitation energies. , 2011, Nano letters.

[3]  B. Sumpter,et al.  Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. , 2011, Nanoscale.

[4]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[5]  M. Dresselhaus,et al.  Raman Spectroscopy in Graphene Related Systems: JORIO:RAMAN O-BK , 2011 .

[6]  Lukas Novotny,et al.  Modulating the electronic properties along carbon nanotubes via tube-substrate interaction. , 2010, Nano letters.

[7]  M. M. Lucchese,et al.  Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder , 2010 .

[8]  P. Eklund,et al.  Charge transfer and weak chemisorption of oxygen molecules in nanoporous carbon consisting of a disordered network of nanographene sheets , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Ado Jorio,et al.  Raman study of ion-induced defects in N-layer graphene , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  M. Dresselhaus,et al.  Raman spectra of graphene ribbons , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  K. Novoselov,et al.  Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging , 2010 .

[12]  Eui-Hyeok Yang,et al.  Determination of edge purity in bilayer graphene using μ-Raman spectroscopy , 2010, 1006.5738.

[13]  T. Yu,et al.  Raman study on the g mode of graphene for determination of edge orientation. , 2010, ACS nano.

[14]  M. M. Lucchese,et al.  Quantifying ion-induced defects and Raman relaxation length in graphene , 2010 .

[15]  R. Saito,et al.  Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy , 2010 .

[16]  R. Saito,et al.  Identifying the Orientation of Edge of Graphene Using G band Raman Spectra , 2009, 0911.1593.

[17]  Lukas Novotny,et al.  Tip‐enhanced Raman spectroscopy of carbon nanotubes , 2009 .

[18]  Shuichi Murakami,et al.  Kohn anomalies in graphene nanoribbons , 2009, 0907.2475.

[19]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[20]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[21]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[22]  Zhenhua Ni,et al.  Edge chirality determination of graphene by Raman spectroscopy , 2008, 0810.4981.

[23]  A. Jorio,et al.  Electron and phonon renormalization near charged defects in carbon nanotubes. , 2008, Nature materials.

[24]  Achim Hartschuh,et al.  Tip-enhanced near-field optical microscopy. , 2008, Angewandte Chemie.

[25]  D. Elias,et al.  Observation of distinct electron-phonon couplings in gated bilayer graphene. , 2008, Physical review letters.

[26]  Francesco Mauri,et al.  Impact of the electron-electron correlation on phonon dispersion:Failure of LDA and GGA DFT functionals in graphene and graphite. , 2008, 0808.2285.

[27]  S. Pisana,et al.  Phonon renormalization in doped bilayer graphene , 2008, 0807.1631.

[28]  A. Reina,et al.  Geometrical approach for the study of G band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite , 2008 .

[29]  R. Saito,et al.  Pseudospin and Deformation-Induced Gauge Field in Graphene(Interaction and Nanostructural Effects in Low-Dimensional Systems) , 2008, 0810.4192.

[30]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[31]  M. Dresselhaus,et al.  Curvature-induced optical phonon frequency shift in metallic carbon nanotubes , 2008, 0803.3847.

[32]  Jun Yan,et al.  Observation of anomalous phonon softening in bilayer graphene. , 2007, Physical review letters.

[33]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[34]  Jian Zhou,et al.  Vibrational property and Raman spectrum of carbon nanoribbon , 2007 .

[35]  K. Fukui,et al.  Electronic structures of graphene edges and nanographene , 2007 .

[36]  A. Jorio,et al.  Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size , 2007 .

[37]  J. Loos,et al.  Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging , 2007 .

[38]  R. Saito,et al.  Local density of states at zigzag edges of carbon nanotubes and graphene , 2007, cond-mat/0703318.

[39]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[40]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[41]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[42]  M. Lazzeri,et al.  Nonadiabatic Kohn anomaly in a doped graphene monolayer. , 2006, Physical review letters.

[43]  T. Ando Anomaly of Optical Phonon in Monolayer Graphene , 2006 .

[44]  R. Saito,et al.  Theory of superconductivity in carbon nanotubes and graphene , 2006, cond-mat/0611452.

[45]  Jie Jiang,et al.  D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size , 2006 .

[46]  T. Ando,et al.  Optical Phonon Interacting with Electrons in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[47]  B. Hecht,et al.  Principles of Nano-Optics: Theoretical foundations , 2006 .

[48]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[49]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[50]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[51]  S. Kawata,et al.  Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles , 2006 .

[52]  S. Murakami,et al.  Gauge Field for Edge State in Graphene , 2006, cond-mat/0602647.

[53]  P. Lambin,et al.  Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes , 2006 .

[54]  L. Novotný,et al.  Near-field Raman microscopy , 2005 .

[55]  M. Dresselhaus,et al.  Raman Spectroscopy of Graphitic Foams , 2005 .

[56]  M. Lazzeri,et al.  Raman spectra of BN-nanotubes: Ab-initio and bond-polarizability model calculations , 2005, cond-mat/0504365.

[57]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[58]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[59]  Jie Jiang,et al.  Photoexcited electron relaxation processes in single-wall carbon nanotubes , 2005 .

[60]  A. Jorio,et al.  Influence of the atomic structure on the Raman spectra of graphite edges. , 2004, Physical review letters.

[61]  G. Medeiros-Ribeiro,et al.  Anisotropy of the Raman spectra of nanographite ribbons. , 2004, Physical review letters.

[62]  J. Robertson,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[63]  Lukas Novotny,et al.  Tip-enhanced optical spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  M. Dresselhaus,et al.  Double resonance Raman spectroscopy of single-wall carbon nanotubes , 2003 .

[65]  Riichiro Saito,et al.  Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes , 2003 .

[66]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[67]  K. Kusakabe,et al.  Magnetic nanographite , 2002, cond-mat/0212391.

[68]  M. Dresselhaus,et al.  Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite , 2002 .

[69]  M. Dresselhaus,et al.  Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy , 2002 .

[70]  M. Dresselhaus,et al.  Probing phonon dispersion relations of graphite by double resonance Raman scattering. , 2001, Physical review letters.

[71]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[72]  G. Mahan,et al.  Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes , 2000 .

[73]  Riichiro Saito,et al.  Finite-size effect on the Raman spectra of carbon nanotubes , 1999 .

[74]  B. Humbert,et al.  Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character , 1998 .

[75]  M. Fujita,et al.  Phonon dispersion of nano-graphite ribbons , 1998 .

[76]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[77]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[78]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[79]  M. Dresselhaus,et al.  Ion Implantation in Diamond, Graphite and Related Materials. Springer‐Verlag Berlin, Heidelberg, 1992, 202 Seiten, 108 Abbildungen, 5 Tabellen, Preis: DM 79.00, ISBN 3‐540‐54956‐0 — ISBN 0‐387‐54956‐0 , 1992 .

[80]  D. B. Fischbach,et al.  Observation of Raman band shifting with excitation wavelength for carbons and graphites , 1981 .

[81]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[82]  R. Tsu,et al.  Observation of splitting of the E2g mode and two-phonon spectrum in graphites☆ , 1978 .

[83]  R. Nemanich,et al.  Observation of an anomolously sharp feature in the 2nd order Raman spectrum of graphite , 1977 .

[84]  F. Tuinstra,et al.  Characterization of Graphite Fiber Surfaces with Raman Spectroscopy , 1970 .

[85]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[86]  C. Kittel Introduction to solid state physics , 1954 .

[87]  S. E. S. E. Wakkad,et al.  Solubility and Particle Size from a Study on Silver Oxide. , 1949 .

[88]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in one-dimensional systems. , 2009, Physical review letters.

[89]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[90]  T. Mernagh,et al.  Raman spectra of Graphon carbon black , 1984 .

[91]  A. Marchand,et al.  Caracterisation de materiaux carbones par microspectrometrie Raman , 1984 .

[92]  M. S. Dresselhaus,et al.  Model for Raman scattering from incompletely graphitized carbons , 1982 .