A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells

Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40 °C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC.

[1]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[2]  Firdaus Muhammad-Sukki,et al.  Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications , 2014 .

[3]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[4]  Serm Janjai,et al.  Potential application of concentrating solar power systems for the generation of electricity in Thailand , 2011 .

[5]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[6]  Giuseppina Ciulla,et al.  An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data , 2013 .

[7]  Aron Dobos,et al.  An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model , 2012 .

[8]  Yuying Li Centering, Trust Region, Reflective Techniques for Nonlinear Minimization Subject to Bounds , 1993 .

[9]  Brian P. Dougherty,et al.  Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models , 2011 .

[10]  Xuegui Zhu,et al.  Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters , 2011 .

[11]  Dionisio Ramirez,et al.  Simple estimation of PV modules loss resistances for low error modelling , 2010 .

[12]  Mikhail Sorin,et al.  Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point , 2011 .

[13]  Jianqiu Zhou,et al.  Effects of mounting geometries on photovoltaic module performance using CFD and single-diode model , 2014 .

[14]  Alireza Rezazadeh,et al.  Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach , 2013 .

[15]  Mohammad Ali Abido,et al.  Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms , 2013, Appl. Soft Comput..

[16]  Wei Han,et al.  Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm , 2014, TheScientificWorldJournal.

[17]  T. Mallick,et al.  Six-parameter electrical model for photovoltaic cell/module with compound parabolic concentrator , 2016 .

[18]  M. U. Siddiqui,et al.  Three-dimensional thermal modeling of a photovoltaic module under varying conditions , 2012 .

[19]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[20]  Donatien Njomo,et al.  An Improved Nonlinear Five-Point Model for Photovoltaic Modules , 2013 .

[21]  Y. Hishikawa,et al.  Modeling of the I–V curves of the PV modules using linear interpolation/extrapolation , 2009 .

[22]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[23]  Valerio Lo Brano,et al.  On the experimental validation of an improved five-parameter model for silicon photovoltaic modules , 2012 .

[24]  Teuku Meurah Indra Mahlia,et al.  Characterization of PV panel and global optimization of its model parameters using genetic algorithm , 2013 .

[25]  Anders Steen-Nilsen Dynge,et al.  Optical modelling for photovoltaic panels , 2013 .

[26]  K. Ebihara,et al.  Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system , 2001 .

[27]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[28]  Tapas K. Mallick,et al.  Optical efficiency study of PV Crossed Compound Parabolic Concentrator , 2013 .

[29]  Manuel Quintanilla,et al.  Holographic lenses for building integrated concentrating photovoltaics , 2013 .

[30]  Reinhard Radermacher,et al.  A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors , 2012 .

[31]  Dionisio Ramirez,et al.  Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve , 2011 .

[32]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[33]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[34]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[35]  Shafiqur Rehman,et al.  Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems , 2014 .

[36]  Harald Müllejans,et al.  A validation study of photovoltaic module series resistance determination under various operating conditions according to IEC 60891 , 2012 .

[37]  Umberto Desideri,et al.  Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations , 2013 .