Path following around corank-2 bifurcation pints of a semi-linear elliptic problem with symmetry

Bifurcating solution branches and their numerical approximations of a semi-linear elliptic problem are considered at corank-2 bifurcaton points. Utilization of basic group concepts allows a classification of the solution curves with their symmetries, and in turn, leads to reductions of singularity of the problem at bifurcation points and computational work in path following of solution branches.ZusammenfassungAbzweigende Lösungskurven und deren numerische Behandlung bei eine semilinearen elliptischen Problem werden bei Korang-2 Verzweigungspunkten diskutiert. Einige, Grundideen der Gruppentheorie erlauben eine Klassifizierung der abzweigenden Lösungskurven nach ihren Symmetrien, sowie eine Reduktion der Siingularität des Problems bei Verzweigungspunkten und eine Reduktion des Rechenaufwand in der Verfolgerung der Lösungskurven.

[1]  Meiyuan Zhen,et al.  A numerical approximation for the simple bifurcation problems , 1989 .

[2]  P. Deuflhard,et al.  Efficient numerical path following beyond critical points , 1987 .

[3]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[4]  E. Allgower,et al.  A Complete Bifurcation Scenario for the 2-d Nonlinear Laplacian with Neumann Boundary Conditions on the Unit Square , 1991 .

[5]  H. Weber An Efficient Technique for the Computation of Stable Bifurcation Branches , 1984 .

[6]  T. Healey,et al.  Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations , 1991 .

[7]  J. Rappaz,et al.  On numerical approximation in bifurcation theory , 1990 .

[8]  P. Lions On the Existence of Positive Solutions of Semilinear Elliptic Equations , 1982 .

[9]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[10]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[11]  A Non-Linear Elliptic Eigenvalue Problem , 1979 .

[12]  H. D. Mittelmann Multilevel continuation techniques for nonlinear boundary value problems with parameter dependence , 1986 .

[13]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[14]  John Norbury,et al.  Solution Branches for Non-linear Equilibrium Problems—Bifurcation and Domain Perturbations , 1982 .

[15]  E. Allgower,et al.  Continuation and local perturbation for multiple bifurcations , 1986 .

[16]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[17]  C. Chien Secondary bifurcations in the buckling problem , 1989 .

[18]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[19]  A. Bossavit,et al.  Symmetry, groups and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry , 1986 .