Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data.

Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.

[1]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[2]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[3]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[4]  C. Wang,et al.  Pyrimidine salvage in Giardia lamblia , 1985, The Journal of experimental medicine.

[5]  Detlef D. Leipe,et al.  Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. , 2002, Molecular biology and evolution.

[6]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[7]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[8]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[9]  T. Cavalier-smith,et al.  Rooting the Eukaryote Tree by Using a Derived Gene Fusion , 2002, Science.

[10]  T. Embley,et al.  Horizontal gene transfer and the evolution of parasitic protozoa. , 2003, Protist.

[11]  A. Roger,et al.  Cell evolution: Mitochondria in hiding , 2002, Nature.

[12]  Yves Van de Peer,et al.  The European Large Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[13]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[14]  M. Hasegawa,et al.  Early evolution of eukaryotes inferred from protein phylogenies of translation elongation factors 1α and 2 , 1997 .

[15]  Terry Gaasterland,et al.  The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Cavalier-smith,et al.  The root of the eukaryote tree pinpointed , 2003, Current Biology.

[17]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[18]  M. Sogin,et al.  Evolution of the protists and protistan parasites from the perspective of molecular systematics. , 1998, International journal for parasitology.

[19]  M. Sogin,et al.  Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. , 2001, Molecular biology and evolution.

[20]  W. Doolittle,et al.  Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.

[21]  Edward Susko,et al.  Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaebacteria in EF-1alpha phylogenies. , 2004, Molecular biology and evolution.

[22]  A. Simpson,et al.  Eukaryotic Evolution: Getting to the Root of the Problem , 2002, Current Biology.

[23]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[24]  P. Thier,et al.  The origin of red algae and the evolution of chloroplasts , 2022 .

[25]  Hervé Philippe,et al.  Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  A. Simpson,et al.  Oxymonads are closely related to the excavate taxon Trimastix. , 2001, Molecular biology and evolution.

[27]  P. Keeling,et al.  A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. , 2003, Molecular biology and evolution.

[28]  Miklós Müller,et al.  Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation , 2003, Nature.

[29]  A. Simpson,et al.  Retortamonad flagellates are closely related to diplomonads--implications for the history of mitochondrial function in eukaryote evolution. , 2002, Molecular biology and evolution.

[30]  T. Cavalier-smith,et al.  Phylogeny and classification of phylum Cercozoa (Protozoa). , 2003, Protist.

[31]  T. Aoki,et al.  Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. , 2000, Gene.

[32]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[33]  David J. Patterson,et al.  The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis” , 1999 .

[34]  P. Holland,et al.  Phylogenomics of eukaryotes: impact of missing data on large alignments. , 2004, Molecular biology and evolution.

[35]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[36]  T. Embley,et al.  A mitochondrial remnant in the microsporidian Trachipleistophora hominis , 2002, Nature.

[37]  C. Wang,et al.  Pyrimidine metabolism in Tritrichomonas foetus. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Doolittle,et al.  Reconstructing/Deconstructing the Earliest Eukaryotes How Comparative Genomics Can Help , 2001, Cell.

[39]  T. Aoki,et al.  The Origin of Dihydroorotate Dehydrogenase Genes of Kinetoplastids, with Special Reference to Their Biological Significance and Adaptation to Anaerobic, Parasitic Conditions , 2004, Journal of Molecular Evolution.

[40]  N. Arisue,et al.  Comparative Analysis of the Ribosomal Componentsof the Hydrogenosome-Containing Protist, Trichomonas vaginalis , 2004, Journal of Molecular Evolution.

[41]  C. Sensen,et al.  The Phylogenetic Position of the Pelobiont Mastigamoeba balamuthi Based on Sequences of rDNA and Translation Elongation Factors EF-1α and EF-2 , 2002, The Journal of eukaryotic microbiology.

[42]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[43]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[44]  H. Philippe,et al.  Ancient phylogenetic relationships. , 2002, Theoretical population biology.

[45]  Yves Van de Peer,et al.  The European database on small subunit ribosomal RNA , 2002, Nucleic Acids Res..

[46]  Hervé Philippe,et al.  The origin of red algae and the evolution of chloroplasts , 2000, Nature.

[47]  Yuji Kohara,et al.  The Phylogenetic Position of Red Algae Revealed by Multiple Nuclear Genes from Mitochondria-Containing Eukaryotes and an Alternative Hypothesis on the Origin of Plastids , 2003, Journal of Molecular Evolution.

[48]  T. Cavalier-smith Only six kingdoms of life , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  S. Baldauf,et al.  The Deep Roots of Eukaryotes , 2003, Science.

[50]  K. Henze,et al.  Origins of hydrogenosomes and mitochondria. , 2000, Current opinion in microbiology.

[51]  D. Horner,et al.  Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  W. Luckett,et al.  Evolutionary Relationships among Rodents , 1985, NATO Advanced Science Institutes (ASI) Series.

[53]  P. Keeling Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? , 2001, Molecular biology and evolution.

[54]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[55]  M. Hasegawa,et al.  Phylogenetic Position of Blastocystis hominis and of Stramenopiles Inferred from Multiple Molecular Sequence Data , 2002, The Journal of eukaryotic microbiology.

[56]  C. Wang,et al.  Salvage of pyrimidine nucleosides by Trichomonas vaginalis. , 1984, Molecular and biochemical parasitology.

[57]  T. Cavalier-smith,et al.  Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. , 2002, Molecular biology and evolution.

[58]  C. Reich,et al.  The Giardia genome project database. , 2000, FEMS microbiology letters.

[59]  Masami Hasegawa,et al.  Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree , 1994 .

[60]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Hasegawa,et al.  Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Anders Krogh,et al.  Hidden Markov models for sequence analysis: extension and analysis of the basic method , 1996, Comput. Appl. Biosci..

[63]  C. O'kelly,et al.  Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba‐like Heterotrophic Nanoflagellate with Discoidal Mitochondrial Cristae , 1999 .

[64]  T. Cavalier-smith,et al.  Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.

[65]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..