Visual Servoing and Pose Estimation with Cameras Obeying the Unified Model

In this chapter, both visual servoing and pose estimation from a set of points are dealt with. More precisely, a unique scheme based on the projection onto the unit sphere for cameras obeying the unified model is proposed. From the projection onto the surface of the unit sphere, new visual features based on invariants to rotations are proposed. It is shown that satisfactory results can be obtained using these features for visual servoing and pose estimation as well.

[1]  Paul D. Fiore,et al.  Efficient Linear Solution of Exterior Orientation , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Helder Araújo,et al.  Issues on the geometry of central catadioptric image formation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  François Chaumette,et al.  New decoupled visual servoing scheme based on invariants from projection onto a sphere , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  François Chaumette,et al.  Visual Servoing from Spheres using a Spherical Projection Model , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[6]  Helder Araújo,et al.  A Fully Projective Formulation to Improve the Accuracy of Lowe's Pose-Estimation Algorithm , 1998, Comput. Vis. Image Underst..

[7]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[9]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Patrick Rives,et al.  Linear structures following by an airship using vanishing point and horizon line in a visual servoing scheme , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Il Hong Suh,et al.  A novel visual servoing approach involving disturbance observer , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Masami Iwatsuki,et al.  A new formulation of visual servoing based on cylindrical coordinate system , 2002, IEEE Transactions on Robotics.

[13]  Tomás Svoboda,et al.  Epipolar Geometry for Central Catadioptric Cameras , 2002, International Journal of Computer Vision.

[14]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[15]  Beno Benhabib,et al.  Three-dimensional location estimation of circular features for machine vision , 1992, IEEE Trans. Robotics Autom..

[16]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[17]  Gregory D. Hager,et al.  The confluence of vision and control, Block Island Workshop on Vision and Control, June 23-27, 1997, Block Island, Rhode Island, USA , 1998, Block Island Workshop on Vision and Control.

[18]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[19]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[20]  François Chaumette,et al.  Potential problems of stability and convergence in image-based and position-based visual servoing , 1997 .

[21]  Michel Dhome,et al.  Determination of the Attitude of 3D Objects from a Single Perspective View , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Francois Chaumette,et al.  Potential problems of unstability and divergence in image-based and position-based visual servoing , 1999, 1999 European Control Conference (ECC).

[23]  Patrick Rives,et al.  Single View Point Omnidirectional Camera Calibration from Planar Grids , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[24]  Shree K. Nayar,et al.  A theory of catadioptric image formation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[25]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Kostas Daniilidis,et al.  Mirrors in motion: epipolar geometry and motion estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Omar Tahri Utilisation des moments en asservissement visuel et en calcul de pose , 2004 .

[28]  Éric Marchand,et al.  Virtual Visual Servoing: a framework for real‐time augmented reality , 2002, Comput. Graph. Forum.

[29]  François Chaumette,et al.  Complex Objects Pose Estimation based on Image Moment Invariants , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  Peter I. Corke,et al.  Choice of image features for depth-axis control in image based visual servo control , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[32]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[33]  François Chaumette,et al.  Point-based and region-based image moments for visual servoing of planar objects , 2005, IEEE Transactions on Robotics.

[34]  Robert E. Mahony,et al.  Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach , 2002, IEEE Trans. Robotics Autom..

[35]  Venkataraman Sundareswaran,et al.  Visual servoing-based augmented reality , 1999 .