Photoinduced heating of nanoparticle arrays.
暂无分享,去创建一个
Serge Monneret | Hervé Rigneault | Romain Quidant | Guillaume Baffou | Pascal Berto | H. Rigneault | Esteban Bermúdez Ureña | J. Polleux | S. Monneret | G. Baffou | Pascal Berto | R. Quidant | Julien Polleux | Esteban Bermúdez Ureña | P. Berto
[1] Romain Quidant,et al. Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .
[2] Pierre-Michel Adam,et al. Reversible strong coupling in silver nanoparticle arrays using photochromic molecules. , 2013, Nano letters.
[3] Guillaume Baffou,et al. Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion. , 2012, ACS nano.
[4] Serge Monneret,et al. Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.
[5] Zhenpeng Qin,et al. Thermophysical and biological responses of gold nanoparticle laser heating. , 2012, Chemical Society reviews.
[6] Ulrich Hohenester,et al. MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..
[7] P. Biagioni,et al. Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.
[8] Hervé Rigneault,et al. Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .
[9] Romain Quidant,et al. Plasmon-assisted optofluidics. , 2011, ACS nano.
[10] Tom Pfeiffer,et al. Single-step injection of gold nanoparticles through phospholipid membranes. , 2011, ACS nano.
[11] G. Baffou,et al. Plasmon-Assisted Opto fl uidics , 2011 .
[12] Brian P. Timko,et al. Remotely Triggerable Drug Delivery Systems , 2010, Advanced materials.
[13] Romain Quidant,et al. Thermoplasmonics modeling: A Green's function approach , 2010 .
[14] S. Curley,et al. Targeted hyperthermia using metal nanoparticles. , 2010, Advanced drug delivery reviews.
[15] Romain Quidant,et al. Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.
[16] Qizhi Zhang,et al. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography , 2009, Nanotechnology.
[17] Romain Quidant,et al. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.
[18] Romain Quidant,et al. Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .
[19] Duane C. Karns,et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .
[20] A. Govorov,et al. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.
[21] F. J. García de abajo,et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.
[22] Naomi J Halas,et al. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.
[23] Jeffrey N. Anker,et al. Biosensing with plasmonic nanosensors. , 2008, Nature materials.
[24] L. Cognet,et al. Photothermal methods for single nonluminescent nano-objects. , 2008, Analytical chemistry.
[25] Javier Aizpurua,et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.
[26] Prashant K. Jain,et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.
[27] Linyou Cao,et al. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. , 2007, Nano letters.
[28] V. Rotello,et al. Drug and gene delivery using gold nanoparticles , 2007 .
[29] Wei Zhang,et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.
[30] H. Szmacinski,et al. Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles , 2005, Journal of Fluorescence.
[31] R. V. Van Duyne,et al. Second harmonic excitation spectroscopy of silver nanoparticle arrays. , 2005, The journal of physical chemistry. B.
[32] Pascal Royer,et al. Electromagnetic interactions in plasmonic nanoparticle arrays. , 2005, The journal of physical chemistry. B.
[33] Massoud Motamedi,et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.
[34] G. Schatz,et al. The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .
[35] Franz R. Aussenegg,et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .
[36] F. G. D. Abajo,et al. Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .
[37] A. Nitzan,et al. Theoretical model for enhanced photochemistry on rough surfaces , 1981 .