Photoinduced heating of nanoparticle arrays.

The temperature distribution throughout arrays of illuminated metal nanoparticles is investigated numerically and experimentally. The two cases of continuous and femtosecond-pulsed illumination are addressed. In the case of continuous illumination, two distinct regimes are evidenced: a temperature confinement regime, where the temperature increase remains confined at the vicinity of each nanosource of heat, and a temperature delocalization regime, where the temperature is uniform throughout the whole nanoparticle assembly despite the heat sources' nanometric size. We show that the occurrence of one regime or another simply depends on the geometry of the nanoparticle distribution. In particular, we derived (i) simple expressions of dimensionless parameters aimed at predicting the degree of temperature confinement and (ii) analytical expressions aimed at estimating the actual temperature increase at the center of an assembly of nanoparticles under illumination, preventing heavy numerical simulations. All these theoretical results are supported by experimental measurements of the temperature distribution on regular arrays of gold nanoparticles under illumination. In the case of femtosecond-pulsed illumination, we explain the two conditions that must be fulfilled to observe a further enhanced temperature spatial confinement.

[1]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[2]  Pierre-Michel Adam,et al.  Reversible strong coupling in silver nanoparticle arrays using photochromic molecules. , 2013, Nano letters.

[3]  Guillaume Baffou,et al.  Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion. , 2012, ACS nano.

[4]  Serge Monneret,et al.  Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.

[5]  Zhenpeng Qin,et al.  Thermophysical and biological responses of gold nanoparticle laser heating. , 2012, Chemical Society reviews.

[6]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[7]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[8]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[9]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[10]  Tom Pfeiffer,et al.  Single-step injection of gold nanoparticles through phospholipid membranes. , 2011, ACS nano.

[11]  G. Baffou,et al.  Plasmon-Assisted Opto fl uidics , 2011 .

[12]  Brian P. Timko,et al.  Remotely Triggerable Drug Delivery Systems , 2010, Advanced materials.

[13]  Romain Quidant,et al.  Thermoplasmonics modeling: A Green's function approach , 2010 .

[14]  S. Curley,et al.  Targeted hyperthermia using metal nanoparticles. , 2010, Advanced drug delivery reviews.

[15]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[16]  Qizhi Zhang,et al.  Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography , 2009, Nanotechnology.

[17]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[18]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[19]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[20]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[21]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[22]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[23]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[24]  L. Cognet,et al.  Photothermal methods for single nonluminescent nano-objects. , 2008, Analytical chemistry.

[25]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[26]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[27]  Linyou Cao,et al.  Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. , 2007, Nano letters.

[28]  V. Rotello,et al.  Drug and gene delivery using gold nanoparticles , 2007 .

[29]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[30]  H. Szmacinski,et al.  Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles , 2005, Journal of Fluorescence.

[31]  R. V. Van Duyne,et al.  Second harmonic excitation spectroscopy of silver nanoparticle arrays. , 2005, The journal of physical chemistry. B.

[32]  Pascal Royer,et al.  Electromagnetic interactions in plasmonic nanoparticle arrays. , 2005, The journal of physical chemistry. B.

[33]  Massoud Motamedi,et al.  Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[34]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[35]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[36]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[37]  A. Nitzan,et al.  Theoretical model for enhanced photochemistry on rough surfaces , 1981 .