Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision

Visual systems extract directional motion information from spatiotemporal luminance changes on the retina. An algorithmic model, the Reichardt detector, accounts for this by multiplying adjacent inputs after asymmetric temporal filtering. The outputs of two mirror-symmetrical units tuned to opposite directions are thought to be subtracted on the dendrites of wide-field motion-sensitive lobula plate tangential cells by antagonistic transmitter systems. In Drosophila, small-field T4/T5 cells carry visual motion information to the tangential cells that are depolarized during preferred and hyperpolarized during null direction motion. While preferred direction input is likely provided by excitation from T4/T5 terminals, the origin of null direction inhibition is unclear. Probing the connectivity between T4/T5 and tangential cells in Drosophila using a combination of optogenetics, electrophysiology, and pharmacology, we found a direct excitatory as well as an indirect inhibitory component. This suggests that the null direction response is caused by feedforward inhibition via yet unidentified neurons.

[1]  Fabrizio Gabbiani,et al.  Collision detection as a model for sensory-motor integration. , 2011, Annual review of neuroscience.

[2]  Benedict M. Sattelle,et al.  Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  Alexander Borst,et al.  Neurons with cholinergic phenotype in the visual system of Drosophila , 2011, The Journal of comparative neurology.

[4]  B. Lapied,et al.  Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). , 2001, Molecular pharmacology.

[5]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[6]  Alastair M. Hosie,et al.  Molecular biology of insect neuronal GABA receptors , 1997, Trends in Neurosciences.

[7]  J. Rybak,et al.  Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera , 2005, Journal of Comparative Physiology A.

[8]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[9]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[10]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[11]  Dawnis M Chow,et al.  Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection , 2010, Journal of Experimental Biology.

[12]  T. Godenschwege,et al.  Compartmentalization of Central Neurons inDrosophila: A New Strategy of Mosaic Analysis Reveals Localization of Presynaptic Sites to Specific Segments of Neurites , 2002, The Journal of Neuroscience.

[13]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[14]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[15]  H. Krapp,et al.  Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway , 2001, Visual Neuroscience.

[16]  Andrew K. Jones,et al.  Diversity of insect nicotinic acetylcholine receptor subunits. , 2010, Advances in experimental medicine and biology.

[17]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[18]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[19]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[20]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[21]  J. Dent The evolution of pentameric ligand-gated ion channels. , 2010, Advances in experimental medicine and biology.

[22]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[23]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[24]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[25]  T. A. Cleland Inhibitory glutamate receptor channels , 1996, Molecular Neurobiology.

[26]  Yu Cao,et al.  Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila , 2006, Current Biology.

[27]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[28]  Alexander Borst,et al.  Candidate Glutamatergic Neurons in the Visual System of Drosophila , 2011, PloS one.

[29]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[30]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[31]  Alexander Borst,et al.  Neurons with GABAergic phenotype in the visual system of Drosophila , 2013, The Journal of comparative neurology.

[32]  C Pfeiffer-Linn,et al.  Acetylcholine and GABA mediate opposing actions on neuronal chloride channels in crayfish. , 1989, Science.

[33]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[34]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[35]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[36]  D. Sattelle,et al.  Acetylcholine receptors of thoracic dorsal midline neurones in the cockroach, Periplaneta Americana. , 1992, Archives of insect biochemistry and physiology.

[37]  J J Milde,et al.  Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways , 1995, The Journal of comparative neurology.

[38]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[39]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  D. Sattelle,et al.  Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. , 2007, Trends in pharmacological sciences.

[41]  P. Salvaterra,et al.  Analysis of choline acetyltransferase protein in temperature sensitive mutant flies using newly generated monoclonal antibody , 1996, Neuroscience Research.

[42]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[43]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[44]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[45]  Kendal Broadie,et al.  Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. , 2002, Journal of neurophysiology.

[46]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[47]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[48]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[49]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[50]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[51]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[52]  Alexander Borst,et al.  The role of GABA in detecting visual motion , 1990, Brain Research.

[53]  A. Borst,et al.  Dendritic Computation of Direction Selectivity and Gain Control in Visual Interneurons , 1997, The Journal of Neuroscience.

[54]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[55]  S. Thany Electrophysiological studies and pharmacological properties of insect native nicotinic acetylcholine receptors. , 2010, Advances in experimental medicine and biology.

[56]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[57]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[58]  H. Bülthoff,et al.  Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala , 1988, Biological Cybernetics.

[59]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[60]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[61]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[62]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[63]  N. Millar,et al.  Characterisation of insect nicotinic acetylcholine receptors by heterologous expression. , 2010, Advances in experimental medicine and biology.

[64]  S. Benzer,et al.  Genetic dissection of the Drosophila nervous system by means of mosaics. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.