High energy product in Battenberg structured magnets

Multiphase nano-structured permanent magnets show a high thermal stability of remanence and a high energy product while the amount of rare-earth elements is reduced. Non-zero temperature micromagnetic simulations show that a temperature coefficient of remanence of −0.073%/K and that an energy product greater than 400 kJ/m3 can be achieved at a temperature of 450 K in a magnet containing around 40 volume percent Fe65Co35 embedded in a hard magnetic matrix.

[1]  H. Kronmüller,et al.  Determination of intrinsic magnetic material parameters of Nd2Fe14B from magnetic measurements of sintered Nd15Fe77B8 magnets , 1986 .

[2]  J. Fidler,et al.  Microstructural evidence for the magnetic surface hardening of Dy2O3-doped Nd15Fe77B8 magnets , 1987 .

[3]  H. Neal Bertram,et al.  Magnetization processes in ferromagnetic cubes , 1988 .

[4]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[5]  M. Schabes,et al.  Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles , 1991 .

[6]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[7]  T. Schrefl,et al.  Exchange hardening in nano-structured two-phase permanent magnets , 1993 .

[8]  D. Fruchart,et al.  High field magnetization measurements of Sm2Fe17, Sm2Fe17N3, Sm2Fe17D5, and Pr2Fe17, Pr2Fe17N3 (invited) , 1994 .

[9]  P. Wendhausen,et al.  Description of texture for permanent magnets , 1994 .

[10]  K. Ramstöck,et al.  Corners and nucleation in Micromagnetics , 1998 .

[11]  E. Fullerton,et al.  Hard/soft magnetic heterostructures: model exchange-spring magnets , 1999 .

[12]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[13]  Isaak D. Mayergoyz,et al.  Numerical technique for integration of the Landau–Lifshitz equation , 2001 .

[14]  Werner Scholz,et al.  A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems , 2002 .

[15]  S. Tsurekawa,et al.  High temperature in-situ observations of magnetic domains in Fe-Co alloys , 2003 .

[16]  Werner Scholz,et al.  Thermal magnetization noise in submicrometer spin valve sensors , 2003 .

[17]  T. Schrefl,et al.  Cell size corrections for nonzero-temperature micromagnetics , 2005 .

[18]  H. Nakamura,et al.  Magnetic properties of extremely small Nd-Fe-B sintered magnets , 2005, IEEE Transactions on Magnetics.

[19]  Eric Vanden-Eijnden,et al.  Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. , 2007, The Journal of chemical physics.

[20]  L. Zanni,et al.  Accelerating gradient projection methods for ℓ1-constrained signal recovery by steplength selection rules , 2009 .

[21]  T. G. Woodcock,et al.  The role of local anisotropy profiles at grain boundaries on the coercivity of Nd2Fe14B magnets , 2010 .

[22]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[23]  J. M. D. Coey,et al.  Hard Magnetic Materials: A Perspective , 2011, IEEE Transactions on Magnetics.

[24]  G. Hadjipanayis,et al.  Prospects for nanoparticle-based permanent magnets , 2012 .

[25]  K. Buchanan,et al.  Volume exchange in soft FeCo films of high magnetization , 2012 .

[26]  Masao Yano,et al.  High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process , 2013 .

[27]  Lukas Exl,et al.  Numerical methods for the stray-field calculation: A comparison of recently developed algorithms , 2012, 1204.4302.

[28]  N. Mauser,et al.  LaBonte's method revisited: An effective steepest descent method for micromagnetic energy minimization , 2013, 1309.5796.

[29]  G. Hadjipanayis,et al.  Finite-Temperature Micromagnetism , 2013, IEEE Transactions on Magnetics.

[30]  Arti Kashyap,et al.  Predicting the Future of Permanent-Magnet Materials , 2013, IEEE Transactions on Magnetics.

[31]  T. G. Woodcock,et al.  Influence of defect thickness on the angular dependence of coercivity in rare-earth permanent magnets , 2014, 1603.08248.

[32]  Balamurugan Balasubramanian,et al.  Magnetic nanostructuring and overcoming Brown's paradox to realize extraordinary high-temperature energy products , 2014, Scientific Reports.