A critique of word similarity as a method for evaluating distributional semantic models

This paper aims to re-think the role of the word similarity task in distributional semantics research. We argue while it is a valuable tool, it should be used with care because it provides only an approximate measure of the quality of a distributional model. Word similarity evaluations assume there exists a single notion of similarity that is independent of a particular application. Further, the small size and low inter-annotator agreement of existing data sets makes it challenging to find significant differences between models.

[1]  Ido Dagan,et al.  Semantic Annotation for Textual Entailment Recognition , 2012, MICAI.

[2]  Dimitri Kartsaklis,et al.  Evaluating Neural Word Representations in Tensor-Based Compositional Settings , 2014, EMNLP.

[3]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[4]  JurafskyDaniel,et al.  Dialogue act modeling for automatic tagging and recognition of conversational speech , 2000 .

[5]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[6]  Eric K. Ringger,et al.  Pulse: Mining Customer Opinions from Free Text , 2005, IDA.

[7]  Jason Weston,et al.  Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks , 2015, ICLR.

[8]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[9]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[10]  Dan Roth,et al.  “Ask Not What Textual Entailment Can Do for You...” , 2010, ACL.

[11]  Peter D. Stetson,et al.  Use of Semantic Features to Classify Patient Smoking Status , 2008, AMIA.

[12]  Miroslav Batchkarov Evaluating distributional models of compositional semantics , 2016 .

[13]  Felix Hill,et al.  SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation , 2014, CL.

[14]  Noam Shazeer,et al.  Swivel: Improving Embeddings by Noticing What's Missing , 2016, ArXiv.

[15]  Elia Bruni,et al.  Multimodal Distributional Semantics , 2014, J. Artif. Intell. Res..

[16]  Christopher D. Manning,et al.  Better Word Representations with Recursive Neural Networks for Morphology , 2013, CoNLL.

[17]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[18]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[19]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[20]  Alexander Yates,et al.  Distributional Representations for Handling Sparsity in Supervised Sequence-Labeling , 2009, ACL.

[21]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[22]  Thorsten Joachims,et al.  Evaluation methods for unsupervised word embeddings , 2015, EMNLP.

[23]  Isabelle Guyon,et al.  Clustering: Science or Art? , 2009, ICML Unsupervised and Transfer Learning.

[24]  Andrew Y. Ng,et al.  Improving Word Representations via Global Context and Multiple Word Prototypes , 2012, ACL.

[25]  Yoshua Bengio,et al.  Word Representations: A Simple and General Method for Semi-Supervised Learning , 2010, ACL.

[26]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.