Fundamental Probability: A Computational Approach

Preface. A note to the student (and instructor). A note to the instructor (and student). Acknowledgements. Introduction. PART I: BASIC PROBABILITY. 1. Combinatorics. 1.1 Basic counting. 1.2 Generalized binomial coefficients. 1.3 Combinatoric identities and the use of induction. 1.4 The binomial and multinomial theorems. 1.4.1 The binomial theorem. 1.4.2 An extension of the binomial theorem. 1.4.3 The multinomial theorem. 1.5 The gamma and beta functions. 1.5.1 The gamma function. 1.5.2 The beta function. 1.6 Problems. 2. Probability spaces and counting. 2.1 Introducing counting and occupancy problems. 2.2 Probability spaces. 2.2.1 Introduction. 2.2.2 Definitions. 2.3 Properties. 2.3.1 Basic properties. 2.3.2 Advanced properties. 2.3.3 A theoretical property. 2.4 Problems. 3. Symmetric spaces and conditioning. 3.1 Applications with symmetric probability spaces. 3.2 Conditional probability and independence. 3.2.1 Total probability and Bayes' rule. 3.2.2 Extending the law of total probability. 3.2.3 Statistical paradoxes and fallacies. 3.3 The problem of the points. 3.3.1 Three solutions. 3.3.2 Further gambling problems. 3.3.3 Some historical references. 3.4 Problems. PART II: DISCRETE RANDOM VARIABLES. 4. Univariate random variables. 4.1 Definitions and properties. 4.1.1 Basic definitions and properties. 4.1.2 Further definitions and properties. 4.2 Discrete sampling schemes. 4.2.1 Bernoulli and binomial. 4.2.2 Hypergeometric. 4.2.3 Geometric and negative binomial. 4.2.4 Inverse hypergeometric. 4.2.5 Poisson approximations. 4.2.6 Occupancy distributions. 4.3 Transformations. 4.4 Moments. 4.4.1 Expected value of X. 4.4.2 Higher-order moments. 4.4.3 Jensen?s inequality. 4.5 Poisson processes. 4.6 Problems. 5. Multivariate random variables. 5.1 Multivariate density and distribution. 5.1.1 Joint cumulative distribution functions. 5.1.2 Joint probability mass and density functions. 5.2 Fundamental properties of multivariate random variables. 5.2.1 Marginal distributions. 5.2.2 Independence. 5.2.3 Exchangeability. 5.2.4 Transformations. 5.2.5 Moments. 5.3 Discrete sampling schemes. 5.3.1 Multinomial. 5.3.2 Multivariate hypergeometric. 5.3.3 Multivariate negative binomial. 5.3.4 Multivariate inverse hypergeometric. 5.4 Problems. 6. Sums of random variables. 6.1 Mean and variance. 6.2 Use of exchangeable Bernoulli random variables. 6.2.1 Examples with birthdays. 6.3 Runs distributions. 6.4 Random variable decomposition. 6.4.1 Binomial, negative binomial and Poisson. 6.4.2 Hypergeometric. 6.4.3 Inverse hypergeometric. 6.5 General linear combination of two random variables. 6.6 Problems. PART III: CONTINUOUS RANDOM VARIABLES. 7. Continuous univariate random variables. 7.1 Most prominent distributions. 7.2 Other popular distributions. 7.3 Univariate transformations. 7.3.1 Examples of one-to-one transformations. 7.3.2 Many-to-one transformations. 7.4 The probability integral transform. 7.4.1 Simulation. 7.4.2 Kernel density estimation. 7.5 Problems. 8. Joint and conditional random variables. 8.1 Review of basic concepts. 8.2 Conditional distributions. 8.2.1 Discrete case. 8.2.2 Continuous case. 8.2.3 Conditional moments. 8.2.4 Expected shortfall. 8.2.5 Independence. 8.2.6 Computing probabilities via conditioning. 8.3 Problems. 9. Multivariate transformations. 9.1 Basic transformation. 9.2 The t and F distributions. 9.3 Further aspects and important transformations. 9.4 Problems. Appendix A. Calculus review. Appendix B. Notation tables. Appendix C. Distribution tables. References. Index.

[1]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[2]  M. C. Jones,et al.  How are moments and moments of spacings related to distribution functions , 2002 .

[3]  Julian Havil Gamma: Exploring Euler's Constant , 2003 .

[4]  Visualizing Leibniz's Rule , 2001 .

[5]  J. Galambos,et al.  Bonferroni-type inequalities with applications , 1996 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  Y. Matsuoka An Elementary Proof of the Formula \Sum ∞ k = 1 1/k 2 = π 2 /6 , 1961 .

[8]  Paul Scott Gauss, Titan of Science [Book Review] , 2005 .

[9]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[10]  Adam Ostaszewski,et al.  Advanced Mathematical Methods , 1990 .

[11]  J. Munkres Analysis On Manifolds , 1991 .

[12]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[13]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[14]  S. Elaydi An introduction to difference equations , 1995 .

[15]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[16]  J Cornfield,et al.  The Bayesian outlook and its application. , 1969, Biometrics.

[17]  F. David Games, Gods and Gambling: A History of Probability and Statistical Ideas , 1998 .

[18]  Harold M. Edwards,et al.  Advanced Calculus: A Differential Forms Approach , 1994 .

[19]  Kai Lai Chung,et al.  Elementary Probability Theory , 1974 .

[20]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[21]  C. Au,et al.  Transforming Variables Using the Dirac Generalized Function , 1999 .

[22]  A. Mood The Distribution Theory of Runs , 1940 .

[23]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[24]  Jacek Koronacki,et al.  Statistical process control : the deming paradigm and beyond , 2002 .

[25]  R. Mittelhammer Mathematical Statistics for Economics and Business , 1996 .

[26]  William G. Cochran,et al.  Sampling Techniques, 3rd Edition , 1963 .

[27]  G. Grimmett,et al.  Probability and random processes , 2002 .

[28]  M. Kendall Studies in the History of Probability and Statistics. XXVI , 1971 .

[29]  H. F. Davis Fourier series and orthogonal functions , 1965 .

[30]  Josef Hofbauer,et al.  A Simple Proof of 1 + 1/22 + 1/32 + ⋯ = π2/6 and Related Identities , 2002, Am. Math. Mon..

[31]  Saeed Ghahramani Fundamentals of Probability , 1995 .

[32]  Introduction to statistics and econometrics in litigation support , 2003 .

[33]  R. Shanmugam Multivariate Analysis: Part 1: Distributions, Ordination and Inference , 1994 .

[34]  W. L. Stevens,et al.  DISTRIBUTION OF GROUPS IN A SEQUENCE OF ALTERNATIVES , 1939 .

[35]  J. Moors,et al.  The Meaning of Kurtosis: Darlington Reexamined , 1986 .

[36]  Brian P. Dawkins Siobhan's Problem: The Coupon Collector Revisited , 1991 .

[37]  Limits: A New Approach to Real Analysis , 1997 .

[38]  J. Stillwell Numbers and Geometry , 1997 .

[39]  James R. Thompson Simulation: A Modeler's Approach , 1999 .

[40]  David Ruppert Statistics and Finance , 2004 .

[41]  William C. Guenther,et al.  The inverse hypergeometric ‐ a useful model , 1975 .

[42]  J. Laurie Snell,et al.  A Conversation with Joe Doob , 1997 .

[43]  Elliot A. Tanis,et al.  An Iterated Procedure for Testing the Equality of Several Exponential Distributions , 1963 .

[44]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[45]  On measuring asymmetry and the reliability of the skewness measure , 1991 .

[46]  T. Nunnikhoven A Birthday Problem Solution for Nonuniform Birth Frequencies , 1992 .

[47]  Bengt Rosen On the Coupon Collector's Waiting Time , 1970 .

[48]  L. W. T. Stafford,et al.  Mathematics for Economists , 1971 .

[49]  Steven J. Schwager Bonferroni Sometimes Loses , 1984 .

[50]  Svetlozar T. Rachev,et al.  Unconditional and Conditional Distributional Models for the Nikkei Index , 1998 .

[51]  H. R. Pitt Measure and integration for use , 1985 .

[52]  George Casella,et al.  The Existence of the First Negative Moment , 1985 .

[53]  George Casella,et al.  The Existence of the First Negative Moment Revisited , 2002 .

[54]  David A. Pierce,et al.  Independence and the Normal Distribution , 1969 .

[55]  L. Joseph 4. Bayesian data analysis (2nd edn). Andrew Gelman, John B. Carlin, Hal S. Stern and Donald B. Rubin (eds), Chapman & Hall/CRC, Boca Raton, 2003. No. of pages: xxv + 668. Price: $59.95. ISBN 1‐58488‐388‐X , 2004 .

[56]  Vincent F. Hendricks,et al.  Probability Theory: Philosophy, Recent History and Relations to Science , 2001 .

[57]  A. Bakst,et al.  The Second Scientific American Book of Mathematical Puzzles and Diversions. , 1962 .

[58]  R. C. Henshaw Testing Single-Equation Least Squares Regression Models for Autocorrelated Disturbances , 1966 .

[59]  Zhongxing Zhang,et al.  The maximum negative binomial distribution , 2000 .

[60]  Frederick Mosteller,et al.  Fifty Challenging Problems in Probability with Solutions , 1987 .

[61]  Ronald Christensen,et al.  Bayesian Resolution of the “Exchange Paradox” , 1992 .

[62]  L. Imhof Matrix Algebra and Its Applications to Statistics and Econometrics , 1998 .

[63]  Dennis Lendrem,et al.  Introduction to Statistical Quality Control, (4th edn) Douglas Montgomery, 2001 ISBN 0‐471‐31648‐2; 795 pages; £34.95, €57.70. $40.00 John Wiley & Sons; www.wileyeurope.com/cda/product/0,,0471986089,00.html , 2003 .

[64]  Thomas Hawkins Lebesgue's theory of integration: Its origins and development , 1971 .

[65]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[66]  Colin Rose,et al.  Mathematical Statistics with Mathematica , 2002 .

[67]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[68]  Donald G. Childers Probability and Random Processes: Using Matlab With Applications to Continuous and Discrete Time Systems , 1997 .

[69]  K. L. Q. Read,et al.  A Lognormal Approximation for the Collector's Problem , 1998 .

[70]  Jeffrey S. Simonoff,et al.  Analyzing Categorical Data , 2003 .

[71]  B. McCabe,et al.  The independence of tests for structural change in regression models , 1983 .

[72]  D. Estep Practical Analysis in One Variable , 2002 .

[73]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[74]  David E. Hapeman Statistical Analysis of Categorical Data , 2000, Technometrics.

[75]  Y. H. Chun On the Information Economics Approach to the Generalized Game Show Problem , 1999 .

[76]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[77]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[78]  Y. Rinott,et al.  Monotone Regrouping, Regression, and Simpson's Paradox , 2003 .

[79]  L. Goddard First Course , 1969, Nature.

[80]  R. Smith Statistics of Extremes, with Applications in Environment, Insurance, and Finance , 2003 .

[81]  D. Zelterman Discrete Distributions: Applications in the Health Sciences , 2004 .

[82]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[83]  On sequences of events with repetitions , 1998 .

[84]  B. Palka An Introduction to Complex Function Theory , 1995 .

[85]  N. Mantel,et al.  LIGHT BULB STATISTICS , 1966 .

[86]  Robert G. Bartle,et al.  Introduction to real analysis / Robert G. Bartle , 2002 .

[87]  J. Panaretos,et al.  On Some Distributions Arising from Certain Generalized Sampling Schemes , 1986 .

[88]  F. Alt,et al.  Bonferroni Inequalities and Intervals , 2006 .

[89]  Jordan Stoyanov,et al.  Counterexamples in Probability , 1988 .

[90]  Philip Hans Franses,et al.  Econometric Models in Marketing , 2002 .

[91]  F. Butzen,et al.  The Science of Conjecture: Evidence and Probability Before Pascal , 2002 .

[92]  Michael R. Chernick,et al.  Runs and Scans With Applications , 2002, Technometrics.

[93]  Applicability of the Nagao–Kadoya bivariate exponential distribution for modeling two correlated exponentially distributed variates , 2001 .

[94]  Walter Nicholson,et al.  Microeconomic Theory : Basic Principles and Extensions. --2nd. ed , 1978 .

[95]  Lawrence Leemis,et al.  A Generalized Univariate Change-of-Variable Transformation Technique , 1997, INFORMS J. Comput..

[96]  E. L. Lehmann,et al.  “Student” and small-sample theory , 1999 .

[97]  B. Arnold,et al.  Bivariate Distributions with Exponential Conditionals , 1988 .

[98]  James Robertson,et al.  Statistical Science in the Courtroom , 2001 .

[99]  Bryan E. Denham Against the Gods: The Remarkable Story of Risk , 1997 .

[100]  M. R. Adams,et al.  Measure Theory and Probability , 1986 .

[101]  A. Edwards,et al.  Pascal's Problem: The 'Gambler's Ruin' , 1983 .

[102]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[103]  David Applebaum,et al.  Stochastic processes : an introduction , 2002, The Mathematical Gazette.

[104]  Julian V. Noble,et al.  The full Monte , 2002, Comput. Sci. Eng..

[105]  Lajos Takács,et al.  The problem of coincidences , 1980 .