Guaranteed Quality Tetrahedral Delaunay Meshing for Medical Images

In this paper, we present a Delaunay refinement algorithm for meshing 3D medical images. We prove that (a) all the tetrahedra of the output mesh have \ratio\ less than 2, (b) all the boundary facets have planar angles larger than 30 degrees, (c) the symmetric (2-sided) Hausdorff distance between the object surface and mesh boundary is bounded from above by a user-specified parameter, and (d) the mesh boundary is ambient isotopic to the object surface. The first two guarantees assure that our algorithm removes most of the poorly shaped elements, making the mesh suitable for subsequent finite element analysis. The last two guarantees assure that the mesh boundary is a good geometrical and topological approximation of the object surface. Our long term goal is to develop a real time image-to-mesh conversion algorithm; towards that direction, our algorithm recovers the object surface and meshes the interior volume at the same time without sampling the object surface as a preprocessing step, unlike other Delaunay meshing techniques. Experimental evaluation of our algorithm on real medical data corroborates the theory.

[1]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[2]  Gary L. Miller,et al.  Data Generation for Geometric Algorithms on Non-Uniform Distributions , 1999, Int. J. Comput. Geom. Appl..

[3]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Andrey N. Chernikov,et al.  Three-dimensional Semi-generalized Point Placement Method for Delaunay Mesh Refinement , 2007, IMR.

[5]  Ronald Fedkiw,et al.  A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra , 2003, IMR.

[6]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[7]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[8]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[9]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[10]  Pierre Alliez,et al.  Perturbing Slivers in 3D Delaunay Meshes , 2009, IMR.

[11]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[12]  Nikos Chrisochoides,et al.  A point based non-rigid registration for tumor resection using iMRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[13]  F. Chazal,et al.  Stability and homotopy of a subset of the medial axis , 2004, SM '04.

[14]  Nikos Chrisochoides,et al.  An Evaluation of Tetrahedral Mesh Generation for Nonrigid Registration of Brain MRI , 2011 .

[15]  M. Yvinec,et al.  Meshing Volumes Bounded by Smooth Surfaces , 2005, IMR.

[16]  H. Si Constrained Delaunay tetrahedral mesh generation and refinement , 2010 .

[17]  Laurent Rineau,et al.  Meshing 3D Domains Bounded by Piecewise Smooth Surfaces* , 2007, IMR.

[18]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[19]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[20]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[23]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[24]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[25]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[26]  Scott A. Mitchell,et al.  Cardinality Bounds for Triangulations with Bounded Minimum Angle , 1994, CCCG.

[27]  Mariette Yvinec,et al.  Mesh Generation from 3D Multi-material Images , 2009, MICCAI.

[28]  Andrey N. Chernikov,et al.  Tetrahedral image-to-mesh conversion for biomedical applications , 2011, BCB '11.

[29]  Hervé Delingette,et al.  Robust nonrigid registration to capture brain shift from intraoperative MRI , 2005, IEEE Transactions on Medical Imaging.

[30]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[31]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[32]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[33]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[34]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[36]  Laurent Rineau,et al.  High-Quality Consistent Meshing of Multi-label Datasets , 2007, IPMI.

[37]  Hervé Delingette,et al.  A Topologically Faithful, Tissue-Guided, Spatially Varying Meshing Strategy for Computing Patient-Specific Head Models for Endoscopic Pituitary Surgery Simulation , 2005, CVBIA.

[38]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[39]  Herbert Edelsbrunner,et al.  An Experimental Study of Sliver Exudation , 2002, Engineering with Computers.

[40]  Andriy Fedorov,et al.  Tetrahedral Mesh Generation for Non-rigid Registration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions , 2008, IMR.

[41]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[42]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[43]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..