Storm track processes and the opposing influences of climate change

Extratropical storms contribute to precipitation, wind and temperature extremes. A synthesis of the influences of a changing climate on storm tracks reveals competing effects on meridional temperature gradients, which make projections difficult.

[1]  The General Circulation of the Atmosphere , 1910 .

[2]  Norman A. Phillips THE GENERAL CIRCULATION OF THE ATMOSPHERE: A NUMERICAL EXPERIMENT , 1960 .

[3]  F. Sanders ANALYTIC SOLUTIONS OF THE NONLINEAR OMEGA AND VORTICITY EQUATIONS FOR A STRUCTURALLY SIMPLE MODEL OF DISTURBANCES IN THE BAROCLINIC WESTERLIES , 1971 .

[4]  B. Hoskins,et al.  Eliassen-Palm Cross Sections for the Troposphere , 1980 .

[5]  Brian J. Hoskins,et al.  The Shape, Propagation and Mean-Flow Interaction of Large-Scale Weather Systems , 1983 .

[6]  T. N. Palmer,et al.  Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific , 1984, Nature.

[7]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[8]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[9]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments , 1988 .

[10]  R. Lindzen,et al.  Hadley Circulations for Zonally Averaged Heating Centered off the Equator , 1988 .

[11]  Paul J. Valdes,et al.  On the Existence of Storm-Tracks. , 1990 .

[12]  I. Mcmillan Uncertain future. , 1991, Nursing times.

[13]  C. Schär,et al.  The Palette of Fronts and Cyclones within a Baroclinic Wave Development , 1991 .

[14]  Brian J. Hoskins,et al.  Rossby Wave Propagation on a Realistic Longitudinally Varying Flow , 1993 .

[15]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[16]  P. Kushner,et al.  A test, using atmospheric data, of a method for estimating oceanic eddy diffusivity , 1998 .

[17]  K. Swanson,et al.  Storm Track Dynamics , 2002, The Global Circulation of the Atmosphere.

[18]  Hailan Wang,et al.  Northern Winter Stationary Waves: Theory and Modeling , 2002 .

[19]  J. Curry,et al.  Encyclopedia of atmospheric sciences , 2002 .

[20]  B. Hoskins,et al.  New perspectives on the Northern Hemisphere winter storm tracks , 2002 .

[21]  Kevin E. Trenberth,et al.  Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales , 2003 .

[22]  P. Kushner,et al.  A Mechanism and Simple Dynamical Model of the North Atlantic Oscillation and Annular Modes , 2004 .

[23]  Seok,et al.  The Response of Westerly Jets to Thermal Driving in a Primitive Equation Model , 2005 .

[24]  Isaac M. Held,et al.  The Gap between Simulation and Understanding in Climate Modeling , 2005 .

[25]  S. Emori,et al.  Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate , 2005 .

[26]  B. Hoskins,et al.  A new perspective on southern hemisphere storm tracks , 2005 .

[27]  Jimmie D. Petty,et al.  Theory and Modeling , 2006 .

[28]  Isaac M. Held,et al.  A Gray-Radiation Aquaplanet Moist GCM. Part I: Static Stability and Eddy Scale , 2006 .

[29]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[30]  Dennis L. Hartmann,et al.  The Atmospheric General Circulation and Its Variability , 2007 .

[31]  P. Field,et al.  Precipitation and Cloud Structure in Midlatitude Cyclones , 2007 .

[32]  Christophe Cassou,et al.  Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation , 2008, Nature.

[33]  T. Schneider,et al.  The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM , 2008 .

[34]  Hisashi Nakamura,et al.  On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation , 2008 .

[35]  Brian J. Hoskins,et al.  The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM , 2008 .

[36]  Andreas H. Fink,et al.  The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change , 2009 .

[37]  P. O'Gorman,et al.  The physical basis for increases in precipitation extremes in simulations of 21st-century climate change , 2009, Proceedings of the National Academy of Sciences.

[38]  Brian J. Soden,et al.  Model projected changes of extreme wind events in response to global warming , 2009 .

[39]  T. Schneider,et al.  WATER VAPOR AND THE DYNAMICS OF CLIMATE CHANGES , 2009, 0908.4410.

[40]  R. Heikes,et al.  The Steady-State Atmospheric Circulation Response to Climate Change–like Thermal Forcings in a Simple General Circulation Model , 2010 .

[41]  C. Deser,et al.  Variability , 2020, Encyclopedia of Continuum Mechanics.

[42]  P. O’Gorman Understanding the varied response of the extratropical storm tracks to climate change , 2010, Proceedings of the National Academy of Sciences.

[43]  Kevin I. Hodges,et al.  Can Climate Models Capture the Structure of Extratropical Cyclones , 2010 .

[44]  T. Woollings Dynamical influences on European climate: an uncertain future , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  N. S. Blunt,et al.  A new mechanism for ocean–atmosphere coupling in midlatitudes , 2011 .

[46]  Camille Li,et al.  Thermally Driven and Eddy-Driven Jet Variability in Reanalysis* , 2011 .

[47]  P. Kushner,et al.  Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change , 2011 .

[48]  Richard P. Allan,et al.  Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere , 2011 .

[49]  P. O’Gorman The Effective Static Stability Experienced by Eddies in a Moist Atmosphere , 2011 .

[50]  P. Cox,et al.  Quantifying future climate change , 2012 .

[51]  P. Loikith,et al.  Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America , 2012 .

[52]  J. Hanley,et al.  Objective identification and tracking of multicentre cyclones in the ERA‐Interim reanalysis dataset , 2012 .

[53]  L. Polvani,et al.  Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments , 2012, Climate Dynamics.

[54]  Heini Wernli,et al.  Quantifying the relevance of atmospheric blocking for co‐located temperature extremes in the Northern Hemisphere on (sub‐)daily time scales , 2012 .

[55]  E. Chang,et al.  CMIP5 multimodel ensemble projection of storm track change under global warming , 2012 .

[56]  Mats Hamrud,et al.  Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration , 2013 .

[57]  T. Schneider,et al.  The Role of Stationary Eddies in Shaping Midlatitude Storm Tracks , 2013 .

[58]  T. Schneider,et al.  Storm Track Shifts under Climate Change: What Can Be Learned from Large-Scale Dry Dynamics , 2013 .

[59]  David B. Stephenson,et al.  A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models , 2013 .

[60]  M. Blackburn,et al.  Context and Aims of the Aqua-Planet Experiment (Special Issue on The Aqua-Planet Experiment Project (APE) and Related Researches) , 2013 .

[61]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[62]  S. Feldstein,et al.  Detecting Ozone- and Greenhouse Gas–Driven Wind Trends with Observational Data , 2013, Science.

[63]  Stephan Pfahl,et al.  The importance of fronts for extreme precipitation , 2013 .

[64]  R. Seager,et al.  A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming , 2014 .

[65]  D. Thompson,et al.  Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing , 2014 .

[66]  T. Shepherd Atmospheric circulation as a source of uncertainty in climate change projections , 2014 .

[67]  L. Polvani,et al.  Southern Hemisphere Cloud–Dynamics Biases in CMIP5 Models and Their Implications for Climate Projections , 2014 .

[68]  Jian Lu,et al.  The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions , 2014 .

[69]  M. Ambaum,et al.  A nonlinear oscillator describing storm track variability , 2014 .

[70]  T. Shaw On the Role of Planetary-Scale Waves in the Abrupt Seasonal Transition of the Northern Hemisphere General Circulation , 2014 .

[71]  L. Polvani,et al.  The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century , 2014 .

[72]  Jian Lu,et al.  The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming–Like Thermal Forcing , 2014 .

[73]  Peter Clark,et al.  Idealised simulations of sting‐jet cyclones , 2014 .

[74]  Heini Wernli,et al.  Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part II: Moisture Origin and Relevance for Precipitation , 2014 .

[75]  E. Barnes,et al.  Periodic Variability in the Large-Scale Southern Hemisphere Atmospheric Circulation , 2014, Science.

[76]  Laura C. Dawkins,et al.  The XWS open access catalogue of extreme European windstorms from 1979 to 2012 , 2014 .

[77]  J. Perlwitz,et al.  Troposphere‐stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models , 2014 .

[78]  E. Gerber,et al.  Quantifying the Summertime Response of the Austral Jet Stream and Hadley Cell to Stratospheric Ozone and Greenhouse Gases , 2014 .

[79]  Adam A. Scaife,et al.  Stratospheric influence on tropospheric jet streams, storm tracks and surface weather , 2015 .

[80]  Sukyoung Lee,et al.  Arctic Warming Induced by Tropically Forced Tapping of Available Potential Energy and the Role of the Planetary-Scale Waves , 2015 .

[81]  Philippe Arbogast,et al.  The Link between the North Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves , 2015 .

[82]  L. Shaffrey,et al.  Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks , 2015, Climate Dynamics.

[83]  S. Pfahl,et al.  Extratropical Cyclones in Idealized Simulations of Changed Climates , 2015 .

[84]  D. Hartmann,et al.  Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review , 2015, Current Climate Change Reports.

[85]  C. Deser,et al.  The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss , 2015 .

[86]  G. Vallis,et al.  Response of the large‐scale structure of the atmosphere to global warming , 2015 .

[87]  Tapio Schneider,et al.  Physics of Changes in Synoptic Midlatitude Temperature Variability , 2015 .

[88]  B. Hoskins,et al.  Persistent Extratropical Regimes and Climate Extremes , 2015, Current Climate Change Reports.

[89]  A. P. Siebesma,et al.  Clouds, circulation and climate sensitivity , 2015 .

[90]  T. Shaw,et al.  Circulation response to warming shaped by radiative changes of clouds and water vapour , 2015 .

[91]  W. Robinson,et al.  North Atlantic Storm-Track Sensitivity to Warming Increases with Model Resolution , 2015 .

[92]  S. Bony,et al.  The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation , 2017 .

[93]  H. Wernli,et al.  A Lagrangian investigation of hot and cold temperature extremes in Europe , 2015 .

[94]  T. Shaw,et al.  Tug of war on summertime circulation between radiative forcing and sea surface warming , 2015 .

[95]  Helen F. Dacre,et al.  How Do Atmospheric Rivers Form , 2015 .

[96]  E. Barnes,et al.  The impact of Arctic warming on the midlatitude jet‐stream: Can it? Has it? Will it? , 2015 .

[97]  J. Neelin,et al.  Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity , 2015 .

[98]  C. Raible,et al.  North Atlantic Eddy-Driven Jet in Interglacial and Glacial Winter Climates , 2015 .

[99]  Dennis L. Hartmann,et al.  Clouds and the Atmospheric Circulation Response to Warming , 2016 .