Computational analyses of parabolic trough solar collector in the presence of helical coil-insert

[1]  Azim Doğuş Tuncer,et al.  Experimental and numerical analysis of a compact indirect solar dehumidification system , 2021 .

[2]  Sujit Roy,et al.  Effects of helical absorber tube on the energy and exergy analysis of parabolic solar trough collector – A computational analysis , 2021 .

[3]  S. Hosseini,et al.  Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector , 2021 .

[4]  Rajat Gupta,et al.  Heat transfer enhancement analysis of parabolic trough collector with straight and helical absorber tube , 2020 .

[5]  Azim Doğuş Tuncer,et al.  Testing of a novel convex-type solar absorber drying chamber in dehumidification process of municipal sewage sludge , 2020 .

[6]  Sujit Roy,et al.  Performance analysis of internally helically v-grooved absorber tubes using nanofluid , 2020 .

[7]  E. Bellos,et al.  A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors , 2020, Sustainable Energy Technologies and Assessments.

[8]  İ. Yılmaz,et al.  Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts , 2020 .

[9]  M. Smyth,et al.  Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation , 2020, Renewable Energy.

[10]  Y. Bi,et al.  Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector , 2020 .

[11]  M. Maerefat,et al.  Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam , 2020 .

[12]  R. Xu,et al.  Numerical and experimental investigation of a compound parabolic concentrator-capillary tube solar collector , 2020 .

[13]  H. Fathabadi Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors , 2020 .

[14]  S. Syri,et al.  Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field , 2019 .

[15]  Shijo Thomas,et al.  Optimisation of thermo-optical properties of SiO2/Ag–CuO nanofluid for direct absorption solar collectors , 2019 .

[16]  Mohammad Hassan Khanjanpour,et al.  Analysis of the thermal efficiency of a compound parabolic Integrated Collector Storage solar water heater in Kerman, Iran , 2019 .

[17]  Ê. B. Bandarra Filho,et al.  Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids , 2019, Renewable Energy.

[18]  M. Maerefat,et al.  Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors , 2019, Solar Energy Materials and Solar Cells.

[19]  S. Syri,et al.  Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field , 2019, Applied Thermal Engineering.

[20]  K. Pandey,et al.  Performance analysis of solar air collector in the climatic condition of North Eastern India , 2018, Energy.

[21]  S. Hannani,et al.  Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid , 2018, Solar Energy.

[22]  E. Bellos,et al.  Multiple cylindrical inserts for parabolic trough solar collector , 2018, Applied Thermal Engineering.

[23]  E. Bellos,et al.  Investigation of a star flow insert in a parabolic trough solar collector , 2018, Applied Energy.

[24]  Evangelos Bellos,et al.  Optimum number of internal fins in parabolic trough collectors , 2018, Applied Thermal Engineering.

[25]  M. Hatami,et al.  Enhanced Efficiency in Concentrated Parabolic Solar Collector (CPSC) with a Porous Absorber Tube Filled with Metal Nanoparticle Suspension , 2018 .

[26]  İ. Yılmaz,et al.  Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid , 2018 .

[27]  M. S. Khalil,et al.  Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions , 2018 .

[28]  Xiao Wei Zhu,et al.  Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver , 2017 .

[29]  Evangelos Bellos,et al.  Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors , 2017 .

[30]  E. Bellos,et al.  Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids , 2017 .

[31]  Evangelos Bellos,et al.  A detailed exergetic analysis of parabolic trough collectors , 2017 .

[32]  S. Saedodin,et al.  Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media , 2017 .

[33]  Ali Akbar Ranjbar,et al.  Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector , 2017 .

[34]  Josua P. Meyer,et al.  Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios , 2017 .

[35]  Wen-Quan Tao,et al.  Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes , 2017 .

[36]  T. Srinivas,et al.  Absorber Tube with Internal Hinged Blades for Solar Parabolic Trough Collector , 2016 .

[37]  K. A. Antonopoulos,et al.  Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube , 2016 .

[38]  O. A. Jaramillo,et al.  Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts , 2016 .

[39]  Abdallah Khellaf,et al.  A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES) , 2015 .

[40]  Wei Liu,et al.  A numerical study on heat transfer enhancement and the flow structure in a heat exchanger tube with discrete double inclined ribs , 2015 .

[41]  K. R. Kumar,et al.  Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector , 2015 .

[42]  Aldo Steinfeld,et al.  Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators , 2014 .

[43]  B. Das,et al.  Second law analysis of an array of vertical plate-finned heat sink undergoing mixed convection , 2014 .

[44]  Di Zhang,et al.  Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion , 2014 .

[45]  Md. Tariqul Islam,et al.  Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts , 2013 .

[46]  S. Suresh,et al.  Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts , 2012 .

[47]  J. Muñoz,et al.  Analysis of internal helically finned tubes for parabolic trough design by CFD tools , 2011 .

[48]  K. Khanafer,et al.  A critical synthesis of thermophysical characteristics of nanofluids , 2011 .

[49]  Orhan Büyükalaca,et al.  Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts , 2010 .

[50]  Chinaruk Thianpong,et al.  Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes , 2010 .

[51]  Sheng‐Qi Zhou,et al.  Measurement of the specific heat capacity of water-based Al2O3 nanofluid , 2008 .

[52]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[53]  シェンカー,ベネディクト,et al.  Measurements of the specific heat capacity , 2007 .

[54]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[55]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[56]  B. S. Petukhov Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties , 1970 .

[57]  L. F. Moody Friction Factors for Pipe Flow , 1944, Journal of Fluids Engineering.

[58]  E. N. Sieder,et al.  Heat Transfer and Pressure Drop of Liquids in Tubes , 1936 .